16.以下四个关于圆锥曲线的命题中①过圆内一点作圆的动弦.则中点的轨迹为椭圆,②设.为两个定点.若.则动点的轨迹为双曲线的一支,③方程的两个根可分别作为椭圆和双曲线的离心率,④无论方程表示的是椭圆还是双曲线.它们都有相同的焦点.其中真命题的序号为 . . 查看更多

 

题目列表(包括答案和解析)

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,若||PA|-|PB||=k,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若
OP
=
1
2
OA
+
1
2
OB
,则动点P的轨迹为椭圆;
③抛物线x=ay2(a≠0)的焦点坐标是(
1
4a
,0)

④曲线
x2
16
-
y2
9
=1
与曲线
x2
35-λ
+
y2
10-λ
=1
(λ<35且λ≠10)有相同的焦点.
其中真命题的序号为
 
写出所有真命题的序号.

查看答案和解析>>

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②以定点A为焦点,定直线l为准线的椭圆(A不在l上)有无数多个;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④过原点O任做一直线,若与抛物线y2=3x,y2=7x分别交于A、B两点,则
OA
OB
为定值.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
OP
=
1
2
(
OA
+
OB
)
,则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
35
-y2=1
和椭圆
x2
25
+
y2
9
=1
有相同的焦点.
其中真命题的序号为
(写出所有真命题的序号)

查看答案和解析>>

以下四个关于圆锥曲线的命题中:
①双曲线
x2
16
-
y2
9
=1
与椭圆
x2
49
+
y2
24
=1
有相同的焦点;
②在平面内,设A、B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-3x+1=0的两根可分别作为椭圆和双曲线的离心率;
④过双曲线x2-
y2
2
=1
的右焦点F作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线l有且仅有3条.
其中真命题的序号为
①④
①④
(写出所有真命题的序号).

查看答案和解析>>

一、BDCBA,BDCDC,BB

二、13.       14.8;        15.;         16. ③④

三、17、

解:(Ⅰ)

                  ……………2分

    由题意知对任意实数x恒成立,

    得,

………………………………………………………6分

   (Ⅱ)由(Ⅰ)知

    由,解得

    所以,的单调增区间为……………………12分

18、

解:(Ⅰ)证明取SC的中点R,连QR, DR.。

由题意知:PD∥BC且PD=BC;

QR∥BC且QP=BC,

QR∥PD且QR=PD。

PQ∥PR,又PQ面SCD,PQ∥面SCD.                               …………6分

(Ⅱ)法一:

                …………12分

(Ⅱ)法二:以P为坐标原点,PA为x轴,PB为y轴,PS为z轴建立空间直角坐标系,则S(),B(),C(),Q(),

面PBC的法向量为(),设为面PQC的法向量,

COS

              …………12分

19、解

     

设A,B两点的坐标为()、()则

(Ⅰ)经过A、B两点的直线方程为

由得:

令得:                                        

    从而

(否则,有一个为零向量)

  代入(1)得  

始终经过这个定点                   …………………(6分)

(Ⅱ)设AB中点的坐标为(),则

AB的中点到直线的距离d为:

因为d的最小值为        ……………(12分)

20、解:(Ⅰ)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码.

     …………………………………………………………………4分

   (Ⅱ)由题意可知,ξ的取值为2,3,4三种情形.

    若ξ= 3,注意表格的第一排总含有数字1,第二排总含有数字2则密码中只可能取数字1,2,3或1,2,4.   

    若

   (或用求得). ………………………………………………8分

    的分布列为:

ξ

2

3

4

p

     ……………………………………………12分

21、

(Ⅰ)

时,,即

当时,

在上是减函数的充要条件为           ………(4分)

(Ⅱ)由(Ⅰ)知,当时为减函数,的最大值为;

当时,

当时,当时

即在上是增函数,在上是减函数,时取最大值,最大值为

    即                ………………(9分)

(Ⅲ)在(Ⅰ)中取,即

由(Ⅰ)知在上是减函数

,即

,解得:或

故所求不等式的解集为[     ……………(13分)

22、

解::⑴ 

,即为的表达式。        (6分)

⑵,,又()

要使成立,只要,即,

即为所求。

故有

                                  (13分)

 


同步练习册答案