(1)求A球与B球第一次碰撞后瞬间.A球的速度V1和B球的速度V2,(2)要使A球与B球第二次仍在B球的初始位置迎面相碰.求劲度系数k的可能取值. 查看更多

 

题目列表(包括答案和解析)

(2010?汕头一模)如图所示,在倾角θ=30°的斜面上放置一段凹槽B,B与斜面间的动摩擦因数μ=
3
6
,槽内靠近右侧壁处有一小球A,它到凹槽内左壁侧的距离d=0.10m.A、B的质量都为m=2.0kg,B与斜面间的最大静摩擦力可认为等于滑动摩擦力,不计A、B之间的摩擦,斜面足够长.现同时由静止释放A、B,经过一段时间,A与B的侧壁发生碰撞,碰撞过程不损失机械能,碰撞时间极短.取重力加速度g=10m/s2.求:
(1)A与B的左侧壁第一次发生碰撞后瞬间A、B的速度.
(2)在A与B的左侧壁发生第一次碰撞后到第二次碰撞前的这段时间内,A与B的左侧壁的距离最大可达到多少?

查看答案和解析>>

(2003?徐州一模)如图所示,两块金属板M、N上下水平放置,两板间电压为U,有两个质量相等的小球A和B,带电A球静止在距下极板32cm处,B球不带电,以0.2m/s的水平速度与A球相碰,碰撞中无能量损失,在两球分离的瞬间把板间电压降为0.9U,碰后B球带电量可忽略不计.求:A、B在板上第一次撞击点间的距离.( g取10m/s2

查看答案和解析>>

如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细线的下端另一个质量为m的铁球(可视作质点),球离地的高度h=L,当绳受到大小为3mg的拉力时就会断裂.现让环与球一起以v=
2gL
的速度向右运动,在A处环被挡住而立即停止,A离右墙的水平距离也为L.不计空气阻力,已知当地的重力加速度为g,试求:
(1)在环由运动到被挡住而立即停止瞬间绳对小球的拉力大小如何变化?变化了多少?
(2)在环停止以后的运动过程中,铁球的第一次碰撞点离墙角B点的距离是多少?

查看答案和解析>>

如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细线的下端另一个质量为m的铁球(可视作质点),球离地的高度h=L,当绳受到大小为3mg的拉力时就会断裂.现让环与球一起以数学公式的速度向右运动,在A处环被挡住而立即停止,A离右墙的水平距离也为L.不计空气阻力,已知当地的重力加速度为g,试求:
(1)在环由运动到被挡住而立即停止瞬间绳对小球的拉力大小如何变化?变化了多少?
(2)在环停止以后的运动过程中,铁球的第一次碰撞点离墙角B点的距离是多少?

查看答案和解析>>

如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细线的下端另一个质量为m的铁球(可视作质点),球离地的高度h=L,当绳受到大小为3mg的拉力时就会断裂。现让环与球一起以的速度向右运动,在A处环被挡住而立即停止,A离右墙的水平距离也为L.不计空气阻力,已知当地的重力加速度为g,试求:

(1)在环由运动到被挡住而立即停止瞬间绳对小球的拉力大小如何变化?变化了多少?

(1)在环停止以后的运动过程中,铁球的第一次碰撞点离墙角B点的距离是多少?

查看答案和解析>>

一.不定项选择题

1.BCD  2.B  3.AC  4.BC  5.B  6.A

二.实验题

1.

设A物块碰撞B物块前后的速度分别为v1和v2,碰撞过程中动量守恒,

  代入数据得:             (4分)

2.①14.45-14.50(4分), ②C(4分),③1.01-1.02 。(4分)

 

三.计算题

1、

解:(1)设A球与B球碰撞前瞬间的速度为v0

由动能定理得,                     ①……………………(2分)

解得:                         ② ………………………(2分)

碰撞过程中动量守恒              ③………………(2分)

   机械能无损失,有           ④……………(2分)

解得      负号表示方向向左  ………………(1分)

      方向向右  ……………………………(1分)            (2)要使m与M第二次迎面碰撞仍发生在原位置,则必有A球重新回到O处所用的时间t恰好等于B球的 ………………………………(1分)

    ⑥ …………………………………………………………………(1分)

(n=0 、1 、2 、3 ……)  ⑦ …………………………(2分)

由题意得:                  ⑧ …………………………(1分)

解得:  (n=0 、1 、2 、3 ……) ⑨ ……………(2分)

2.

解:子弹穿过A时,子弹与A动量守恒,

由动量守恒定律: ………………………  ①    3分

而由  得:v1=300m/s

得:   ………………………②

子弹穿过B时, 子弹与B动量守恒,

由动量守恒定律:    ………………………③   3分

又由  …………………④   2分

得:v2=100m/s

由③,④得:   ………………………⑤

子弹穿过B以后,弹簧开始被压缩,A、B和弹簧所组成的系统动量守恒

由动量守恒定律:   ………………………⑥   3分

由能量关系:   ……………………⑦  3分

由② ⑤ ⑥ ⑦得:  ………………………⑧    2分

3.

解(1) 第一次碰撞前,A、B之间的压力等于A的重力,即…………1分

 A对B的摩擦力…………………………………………1分

而B与地面间的压力等于A、B重力之和,即…………1分

        地面对B的最大静摩擦力 ……………………………….1分

                  故第一次碰撞前,B不运动………………………2分

(2)设A第一次碰前速度为v,碰后B的速度为v2

     则由动能定理有………………………………………………………………..1分

……………………………………..2分

     碰撞过程中动量守恒…………………………………………………………..1分

有        ………………………………………………..2分

解得………………………………………………….2分

(3)当停止运动时, 继续向右滑行)后停止,设B停止时,的速度为,则由动能定理……………………………………………………………………1分

……………………………………………………..2分

解得…………………………………………………………………..1分

4.

答案:(1)整个过程中系统克服摩擦力做的总功为

Wf=µmgl(1+2+3+…+n)=…………………………..2分

整个过程中因碰撞而损失的总动能为

……………………………..1分

(2)设第i次(i≤n-1)碰撞前瞬间,前i个木块粘合在一起的速度为vi

动能为  

与第i+1个(i≤n-1)木块碰撞粘合在一起后瞬间的速度为vi',

由动量守恒定律   ………………………………………….2分

第i次(i≤n-1)碰撞中损失的动能为

…….2分

则第i次(i≤n-1)碰撞中损失的动能与碰撞前动能之比为

               (i≤n-1)………………………………………………………1分

(3)n=4时,共发生了i=3次碰撞.

第1次碰前瞬间的速度为,碰撞中动量守恒:

第1次碰后瞬间的速度为……………………….3分

第2次碰前瞬间的速度为

碰撞中动量守恒:

第2次碰后瞬间的速度为……………………….3分

第3次碰前瞬间的速度为

碰撞中动量守恒:

第3次碰后瞬间的速度为………………………...3分

最后滑行到桌边,速度恰好为零,则……………………….1分

整理后得,代入数据解得………………………….1分

5.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

解:(1)在弹簧弹开的过程中系统动量守恒,假设A运动的方向为正方向,则

                 Mv1-mv2=0                      2分

设从弹开到相遇所需时间为t,则有:

             v1t+v2t=2πR                       2分

联立以上两式得:                    2分

所以A球转过的角度为θ=120°                                 2分

(2)以A、B及弹簧组成的系统为研究对象,在弹簧张开的过程中,系统机械能守恒,则有                                       2分

             Mv1-mv2=0                       2分

解得:                      v1=2m/s,v2=4m/s                 2分

所以,小球B在运动过程中受到光滑轨道的侧压力是其所需向心力,即:

                         2分

7.

解:(1)A与B第一次碰撞前,A对B的摩擦力为

                             2分

地面对B的最大静摩擦力为

                          2分

        故A与B第一次碰撞前,B不运动          2分

(2)设A第一次碰前速度为v,碰后B的速度为v2,则由动能定理有

                     2分

碰撞过程中动量守恒有

                     2分

解得                   2分

8.

(1)设A与B碰撞前A的速度为 V1 ,碰撞过程动量守恒,有:

mv1=(M+m)v  (2分)  代入数据解得:v1=3m/s ( 2分)

(2)对A,从开始运动至碰撞B之前,根据动能定理,有:(2分) 代入数据解得:

 

 

 

 

 

 

 

 

9.

(1)设物体从A滑落至B时速率为

             (2分)                      

              (1分)                      

        物体与小球相互作用过程中,系统动量守恒,设共同速度为

             (2分)                      

             (1分 )                    

   (2)设二者之间的摩擦力为

        (2分)        

        (2分)       

        得   (1分)                      

  (3)设物体从EF滑下后与车达到相对静止,共同速度为v2相对车滑性的距离为S1

       车停后物体做匀减速运动,相对车滑行距离为S1

              (1分)                      

      (1分)                

      (2分)                      

      联立解得          (1分)

 


同步练习册答案