已知函数 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=4sin(2x-
π
3
)+1
,给定条件p:
π
4
≤x≤
π
2
,条件q:-2<f(x)-m<2,若p是q的充分条件,则实数m的取值范围为
 

查看答案和解析>>

已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(f(
52
))的值是
 

查看答案和解析>>

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

8、已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log5x的图象的交点个数为(  )

查看答案和解析>>

已知函数f(x)=
3-x,x>0
x2-1.x≤0
,则f[f(-2)]=
 

查看答案和解析>>

 

1.D  2.B  3.D  4.B  5.A  6.B  7.C  8.B  9.A  10.C

11.    12.    13.3    14.    15.①②④

16.解:(1)由题意,得 ………………2分

解不等式组,得……4分

   (2)                                                      ………………6分

                                                 ………………7分

上是增函数。                                                ………………10分

                                                         ………………12分

17.解:(1)

不在集合A中。                                                         ………………3分

,                      ………………5分

上是减函数,

在集合A中。                                        ………………8分

   (2)当,          ………………11分

又由已知

因此所求的实数k的取值范围是                              ………………12分

18.解:(1)当

                                   ………………2分

,                                                         ………………5分

                  ………………6分

定义域为                                           ………………7分

   (2)对于,                        

显然当(元),                                         ………………9分

∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多。…………12分

19.解:(1)选取的5只恰好组成完整“奥运吉祥物”的概率

                                                        ………………4分

   (2)                                                ………………5分

                                                   ………………9分

ξ的分布列为

ξ

100

80

60

40

P

                                                                                               ………………11分

                                      ………………13分

20.解:(1)恒成立,

从而              ………………4分

   (2)由(1)可知

由于是单调函数,

                   ………………8分

   (3)

上是增函数,

                                                                                               ………………12分

21.(1)证明:①因为

当且仅当

因为       ………………3分

②因为,由①得    (i)

下面证明:对于任意成立。

    根据(i)、(ii)得                                                    ………………9分

   (2)解:由

从而

因为

                                                                                               ………………11分

                                                               ………………14分

 

 


同步练习册答案