题目列表(包括答案和解析)
(本题满分10分)已知
,对
,
恒成立,求
的取值范围。
已知函数
在
处取得极小值![]()
(1)求
;
(2)若
对
恒成立,求
的取值范围。
已知不等式
,
(1)若对所有的实数
不等式恒成立,求
的取值范围;
(2)设不等式对于满足
的一切
的值都成立,求
的取值范围。
已知不等式
,
(1)若对所有的实数
不等式恒成立,求
的取值范围;
(2)设不等式对于满足
的一切
的值都成立,求
的取值范围。
一、选择题(本大题共10小题,每题5分,共50分)
1.C 2.A 3.B 4.D 5.B
6.B 7.C 8.D 9.D 10.A
二、填空题(本大题共7小题,每题4分,共28分)
11.2 12.45 13.
14.
15.1 16.144 17.
三、解答题(本大题共5小题,第18―20题各14分,第21、22题各15分,共72分)
18.(1)因为
(4分)
所以
(Ⅱ)由(I)得,
(10分)
因为
所以
,所以
(12分)
因此,函数
的值域为
。(14分)
19.(I)因为
,所以
平面
。 (3分)
又因为
平面
所以
①(5分)
在
中,
,由余弦定理,
得
因为
,所以
,即
。② (7分)
由①,②及
,可得
平面
(8分)
(Ⅱ)方法一;
在
中,过
作
于
,则
,所以
平面
在
中,过
作
于
,连
,则
平面
,
所以
为二面角
的平面角 (11分)
在
中,求得
,
在
中,求得
,
所以
所以
。
因此,所求二面角
的大小的余弦值为
。
方法二:
如图建立空间直角坐标系
(9分)
则

设平面
的法向量为
,
则
所以
,取
,
则
(11分)
又设平面
的法向量为
,
则
,取
,则
(13分)
所以,
因此,所求二面角
的大小余弦值为
。
20.(I)
(6分)
(Ⅱ)



1
2
3
4
5






(14分)
21.(I)由题意得
(3分)
解得
(5分)
所以椭圆方程为
(6分)
(Ⅱ)直线
方程为
,则
的坐标为
(7分)
设
则
,
直线
方程为
令
,得
的横坐标为
① (10分)
又
得
得
, (12分)
代入①得
, (14分)
得
,
为常数4 (15分)
22.(I)
(2分)
由于
,故尝
时,
,所以
, (4分)
故函数
在
上单调递增。 (5分)
(Ⅱ)令
,得到
(6分)
的变化情况表如下: (8分)


0


一
0
+


极小值

因为函数
有三个零点,所以
有三个根,
有因为当
时,
,
所以
,故
(10分)
(Ⅲ)由(Ⅱ)可知
在区间
上单调递减,在区间
上单调递增。
所以
(11分)


记
则
(仅在
时取到等号),
所以
递增,故
,
所以
(13分)
于是
故对
,所以
(15分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com