设数列的首项.且记. 查看更多

 

题目列表(包括答案和解析)

设数列的首项,前项和为,且成等差数列,其中.
(1)求数列的通项公式;
(2)数列满足:,记数列的前项和为,求及数列的最大项.

查看答案和解析>>

设数列的首项,前项和为,且成等差数列,其中.
(1)求数列的通项公式;
(2)数列满足:,记数列的前项和为,求及数列的最大项.

查看答案和解析>>

 设数列的首项,前项和为,且点在直线为与无关的正实数)上,

(1)求证:数列是等比数列;

(2)记数列的公比为,数列满足,设,求数列的前项和

(3)在(2)的条件下,设,证明:.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

设数列{an}是首项为a1(a1>0),公差为2的等差数列,其前n项和为Sn,且
S1
S2
S3
成等差数列.
(Ⅰ)求数列{an]的通项公式;
(Ⅱ)记bn=
an
2n
的前n项和为Tn,求Tn

查看答案和解析>>

设数列{an}的首项a1=a≠
1
4
,且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,记bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当a>
1
4
时,数列{cn}前n项和为Sn,求Sn最值.

查看答案和解析>>

一、选择题(本大题共12小题,每小题4分,共48分)

1.B    2.A    3.D      4.C     5.D    6.C

7.A    8.C    9.B      10.C    11.A   12.B   

二、填空题(本大题共4小题,每小题4分,共16分)

13.

14.

 

 

 

 

15. 增函数的定义

16. 与该平面平行的两个平面

三、解答题(本大题共3小题,每小题12分,共36分)

17.(本小题满分12分)

解:(Ⅰ)涉及两个变量,年龄与脂肪含量.

因此选取年龄为自变量,脂肪含量为因变量

作散点图,从图中可看出具有相关关系.             

┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)的回归直线方程为

.        

时,

时,

所以岁和岁的残差分别为.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18A. (本小题满分12分)

证明:由于

所以只需证明

展开得,即

所以只需证

因为显然成立,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小题满分12分)

证明:(Ⅰ)因为,所以

由于函数上的增函数,

所以

同理,

两式相加,得.┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)逆命题:

,则

用反证法证明

假设,那么

所以

这与矛盾.故只有,逆命题得证.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小题满分12分)

解:(Ⅰ)由于,且

所以当时,得,故

从而.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)数列不可能为等差数列,证明如下:

若存在,使为等差数列,则

,解得

于是

这与为等差数列矛盾.所以,对任意,数列都不可能是等差数列.

┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小题满分12分)

解:(Ⅰ)

.┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由(Ⅰ)可得

猜想:是公比为的等比数列.

证明如下:因为

,所以

所以数列是首项为,公比为的等比数列.┄┄┄┄┄┄┄┄┄┄┄┄12分

 

 

 


同步练习册答案