解:由知点C的轨迹是过M.N两点的直线.故点C的轨迹方程是: 查看更多

 

题目列表(包括答案和解析)

定义:区间[m,n]、(m,n]、[m,n)、(m,n)(n>m)的区间长度为n-m;若某个不等式的解集由若干个无交集的区间的并表示,则各区间的长度之和称为解集的总长度.已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[-3,3],则不等式f(x)•g(x)<0解集的总长度的取值范围是
[0,3]
[0,3]

查看答案和解析>>

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,3),解关于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,则y∈(
1
3
, 1)
,所以不等式cx2-bx+a>0的解集为(
1
3
, 1)

参考上述解法,已知关于x的不等式
k
x+a
+
x+b
x+c
<0
的解集为(-2,-1)∪(2,3),则关于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集为
 

查看答案和解析>>

研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),解关于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,则y∈(
1
2
, 1)
,所以不等式cx2-bx+a>0的解集为(
1
2
, 1)

参考上述解法,已知关于x的不等式
k
x+a
+
x+b
x+c
<0
的解集为(-2,-1)∪(2,3),求关于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集.

查看答案和解析>>

先阅读第(1)题的解法,再解决第(2)题:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
解:由|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,当
b
=(
3
25
4
25
)
时取等号,
所以x2+y2的最小值为
1
25

(2)已知实数x,y,z满足2x+3y+z=1,则x2+y2+z2的最小值为
1
14
1
14

查看答案和解析>>

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>


同步练习册答案