题目列表(包括答案和解析)
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
已知
,函数
(其中
为自然对数的底数).
(Ⅰ)求函数
在区间
上的最小值;
(Ⅱ)设数列
的通项
,
是前
项和,证明:
.
【解析】本试题主要考查导数在研究函数中的运用,求解函数给定区间的最值问题,以及能结合数列的相关知识,表示数列的前n项和,同时能构造函数证明不等式的数学思想。是一道很有挑战性的试题。
数列
,
(
)由下列条件确定:①
;②当
时,
与
满足:当
时,
,
;当
时,
,
.
(Ⅰ)若
,
,求
,
,
,并猜想数列
的通项公式(不需要证明);
(Ⅱ)在数列
中,若
(
,且
),试用
表示
,
;
(Ⅲ)在(Ⅰ)的条件下,设数列![]()
满足
,
,
(其中
为给定的不小于2的整数),求证:当
时,恒有
.
(08年黄冈市质检文) (14分) 把自然数按上小下大、左小右大的原则排成如图的三角形数表(每行比上一行多一个数).设
是位于这个三角形数表中从上往下数第
行、从左往右数的第
个数(如
).
⑴试用
表示
(不要求证明);
⑵若
,求的
值;
⑶记三角形数表从上往下数第
行各数和为
,令
,若数列
的前
项和为
,求
.
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com