题目列表(包括答案和解析)
解:因为有负根,所以
在y轴左侧有交点,因此![]()
解:因为函数没有零点,所以方程
无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“
”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数
的分布列。
解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数
的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。
某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费
若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,
(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?
解析:依题意得f(x)的图象关于直线x=1对称,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函数f(x)是以4为周期的函数.由f(x)在[3,5]上是增函数与f(x)的图象关于直线x=1对称得,f(x)在[-3,-1]上是减函数.又函数f(x)是以4为周期的函数,因此f(x)在[1,3]上是减函数,f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
当今的时代是计算机时代,我们知道计算机装置有一数据输入口A和一个运算结果的输出口
B.某同学编入下列运算程序将数据输入且满足以下性质:(1)从A输入1时,从B得到
;(2)从A输入整数n(n≥2)时,在B得到的结果f(n)是将前一结果f(n-1)先乘以奇数2n-3,再除以奇数2n+1.试问:
(Ⅰ)从A输入2,3,4时,从B分别得到什么数?
(Ⅱ)从A输入1,2,3,……2002时,从B得到的各数之和是多少?并说明理由.
解答题:解答应写出文字说明,证明过程或演算步骤.
设P(x1,y1),Q(x2,y2)是抛物线C:y2=2px(p>0)上相异两点,且
,直线PQ与x轴相交于E.
(Ⅰ)若P,Q到x轴的距离的积为4,求p的值;
(Ⅱ)若p为已知常数,在x轴上,是否存在异于E的一点F,使得直线PF与抛物线的另一交点为R,而直线RQ与x轴相交于T,且有
,若存在,求出F点的坐标(用p表示),若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com