题目列表(包括答案和解析)
| |||||
抽象函数是由特殊的、具体的函数抽象而得到的.如正比例函数f(x)=kx(k≠0),由f(x1)=kx1,f(x2)=kx2抽象得到f(x1+x2)=f(x1)+f(x2)可抽象为f(x+y)=f(x)+f(y).写出下列抽象函数是由什么特殊函数抽象而成的(填入一个函数即可).
问题:将y=2x的图象向________平行移动________个单位,再作关于直线y=x对称的图象,可得函数y=log2(x+1)的图象.
对于此问题,甲、乙、丙三位同学分别给出了不同的解法:
甲:在同一坐标系内分别作y=2x与y=log2(x+1)的图象,直接观察,可知向下平行移动1个单位即得.
乙:与函数y=log2(x+1)的图象关于直线y=x对称的曲线是它的反函数y=2x-1的图象,为了得到它,只需将y=2x的图象向下平移1个单位.
丙:由
所以点(0,0)在函数y=log2(x+1)的图象上,(0,0)点关于y=x的对称的点还是其本身.函数y=2x的图象向左或向右或向上平行移动都不会过(0,0)点,因此只能向下平行移动1个单位.
你赞同谁的解法?你还有其他更好的解法吗?
设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
设函数
f(x)=a2x2(a>0),g(x)=blnx.(1)
将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;(2)
关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;(3)
对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com