(Ⅰ)解:根据求导法则有. 查看更多

 

题目列表(包括答案和解析)

幂指函数y=[f(x)]g(x)在求导时,可运用对数法:在函数解析式两边求对数得lny=g(x)•lnf(x),两边同时求导得
y/
y
=g/(x)lnf(x)+g(x)
f/(x)
f(x)
,于是y′=[f(x)]g(x)[g/(x)lnf(x)+g(x)
f/(x)
f(x)
]
,运用此方法可以探求得知y=x
1
x
的一个单调递增区间为(  )

查看答案和解析>>

我们把形如y=f(x
)
φ(x)
 
的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边求对数得lny=lnf(x
)
φ(x)
 
=φ(x)lnf(x)
,两边对x求导数,得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x
)
φ(x)
 
[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,运用此方法可以求得函数y=
x
x
 
(x>0)
在(1,1)处的切线方程是
y=x
y=x

查看答案和解析>>

试根据复合函数的求导法则,研究函数f(x)=xx(x>0)的性质,并回答:下列命题中假命题的个数是(  )
①f(x)的极大值为1;
②f(x)的极小值为1;
③f(x)的一个单调递增区间是(
1
10
,10)
A、0B、1C、2D、3

查看答案和解析>>

已知二次函数y=f(x)的图象与x轴交于(0,0),(2,0)且有最大值为1.
(1)求y=f(x)的解析式;
(2)设g(x)=|f(x)|,画出g(x)的大致图象,并指出g(x)的单调区间;
(3)若方程g(x)=m恰有四个不同的解,根据图象指出实数m的取值范围.

查看答案和解析>>

我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得lny=φ(x)lnf(x),两边求导数,得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x)φ(x)[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,运用此方法可以探求得函数y=x
1
x
的一个单调递增区间是(  )

查看答案和解析>>


同步练习册答案