②当时.令得解得: 查看更多

 

题目列表(包括答案和解析)

已知

(1)求的单调区间;

(2)证明:当时,恒成立;

(3)任取两个不相等的正数,且,若存在使成立,证明:

【解析】(1)g(x)=lnx+=        (1’)

当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;

当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)

(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1      ∴lnx0 –lnx=-1–lnx===(10’)  设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵=

∴lnx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

已知x+y=1(x>0,y>0),求+的最小值.请仔细阅读下面的解法并在填空处回答指定的问题.

解:∵x+y=1(x>0,y>0),∴令x=cos2θ,y=sin2θ(其中①___________;②____________),则+=1cos2θ+=tan2θ+2cot2θ+3≥3+,则当③____________时,+取得最小值3+(注意:①指出运用了什么数学方法;②指出θ的一个取值范围;③指出x,y的取值).

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调递减区间;

(Ⅱ)令函数),求函数的最大值的表达式

【解析】第一问中利用令,

第二问中,=

=

= ,则借助于二次函数分类讨论得到最值。

(Ⅰ)解:令,

的单调递减区间为:…………………4

(Ⅱ)解:=

=

=

 ,则……………………4

对称轴

①   当时,=……………1

②  当时,=……………1

③  当时,   ……………1

综上:

 

查看答案和解析>>

(本小题满分12分)已知f (x)=(1+x)m+(1+2x)n(mn∈N*)的展开式中x的系数为11.
(1)求x2的系数的最小值;
(2)当x2的系数取得最小值时,求f (x)展开式中x的奇次幂项的系数之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系数为
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5时,x2的系数取最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.设这时f (x)的展开式为f (x)=a0a1xa2x2a5x5
x=1,a0a1a2a3a4a5=2533
x=-1,a0a1a2a3a4a5=-1,
两式相减得2(a1a3a5)=60, 故展开式中x的奇次幂项的系数之和为30.

查看答案和解析>>

(本小题满分12分)已知f (x)=(1+x)m+(1+2x)n(mn∈N*)的展开式中x的系数为11.
(1)求x2的系数的最小值;
(2)当x2的系数取得最小值时,求f (x)展开式中x的奇次幂项的系数之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系数为
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5时,x2的系数取最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.设这时f (x)的展开式为f (x)=a0a1xa2x2a5x5
x=1,a0a1a2a3a4a5=2533
x=-1,a0a1a2a3a4a5=-1,
两式相减得2(a1a3a5)=60, 故展开式中x的奇次幂项的系数之和为30.

查看答案和解析>>


同步练习册答案