(2)如图.已知不共面的三条直线..相交于点..是直线上的异于点O的两点..分别是.上一点.求证:和是异面直线 查看更多

 

题目列表(包括答案和解析)

(本小题共12分)

如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点AO为坐标原点,

定点B的坐标为(2,0).

(1)若动点M满足,求点M的轨迹C;

(2)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

 

查看答案和解析>>

精英家教网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足
AB
BM
+
2
|
AM
|=0
,求点M的轨迹C;
(Ⅱ)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

如图,已知平面α∩平面β=AB,PQ⊥α于Q,PC⊥β于C,CD⊥α于D.
(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.

查看答案和解析>>

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

(2012•肇庆一模)如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2
3
,AB=2
2
,AA1=A1C=
6

(Ⅰ) 求侧棱B1B在平面A1ACC1上的正投影的长度.
(Ⅱ) 设AC的中点为D,证明A1D⊥底面ABC;
(Ⅲ) 求侧面A1ABB1与底面ABC所成二面角的余弦值.

查看答案和解析>>


同步练习册答案