长方体ABCD-A1B1C1D1中.(1)三度分别为a.b.c,则由A沿长方体表面到C1的最短路径长为 ;(2)若其全面积为S.所有棱长和为E.则其对角线长为 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在长方体ABCD-A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,
(1)求异面直线EF与A1D所成角的余弦值;
(2)证明AF⊥平面A1ED;
(3)求二面角A1-ED-F的正弦值.

查看答案和解析>>

在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为10.
(1)求棱A1A的长;
(2)求此几何体的表面积,并画出此几何体的主视图和俯视图(写出各顶点字母).

查看答案和解析>>

如图所示,长方体ABCD-A1B1C1D1中,P是线段AC上任意一点.
(1)判断直线B1P与平面A1C1D的位置关系并证明;
(2)若AB=BC,E是AB中点,二面角A1-DC1-D1的余弦值是
10
5
,求直线B1E与平面A1C1D所成角的正弦值.

查看答案和解析>>

精英家教网如图,在长方体ABCD-A1B1C1D1中,E,F分别是棱BC,CC1上的点,CF=AB=2CE=2,AD=4,AA1=8.
(1)求直线A1E与平面AA1DD1所成角的正弦值;
(2)求证:AF⊥平面A1ED;
(3)求二面角A1-ED-F的余弦角.

查看答案和解析>>

在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为
403

(Ⅰ)求棱A1A的长;
(Ⅱ)自行连接BD,证明:平面A1BC1⊥平面BDD1

查看答案和解析>>


同步练习册答案