故当.取得最小值.最小值为时.取得最大值. 查看更多

 

题目列表(包括答案和解析)

函数在同一个周期内,当 时,取最大值1,当时,取最小值

(1)求函数的解析式

(2)函数的图象经过怎样的变换可得到的图象?

(3)若函数满足方程求在内的所有实数根之和.

【解析】第一问中利用

又因

       函数

第二问中,利用的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

第三问中,利用三角函数的对称性,的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,可得结论。

解:(1)

又因

       函数

(2)的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

(3)的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,

故所有实数之和为

 

查看答案和解析>>

已知c>0.设

命题P:cn=0.

命题Q:当x∈[,2]时,函数f(x)=x+恒成立.

    如果P或Q为真命题,P且Q为假命题,求c的取值范围.

    分析:由cn=0得,0<c<1.∴P:0<c<1,

    由x∈[,2]时,函数f(x)=x+恒成立,想到<f(x)min,故需求f(x)在[,2]上的最小值.

查看答案和解析>>

已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.

(1)求的解析式;         (2)当,求的值域.    

【解析】第一问利用三角函数的性质得到)由最低点为得A=2. 由x轴上相邻的两个交点之间的距离为=,即由点在图像上的

第二问中,

=,即时,取得最大值2;当

时,取得最小值-1,故的值域为[-1,2]

 

查看答案和解析>>

 [番茄花园1] 本题共有2个小题,第一个小题满分5分,第2个小题满分8分。

已知数列的前项和为,且

(1)证明:是等比数列;

(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。

同理可得,当n≤15时,数列{Sn}单调递减;故当n=15时,Sn取得最小值.

 


 [番茄花园1]20.

查看答案和解析>>

(本小题满分12分)已知f (x)=(1+x)m+(1+2x)n(mn∈N*)的展开式中x的系数为11.
(1)求x2的系数的最小值;
(2)当x2的系数取得最小值时,求f (x)展开式中x的奇次幂项的系数之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系数为
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5时,x2的系数取最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.设这时f (x)的展开式为f (x)=a0a1xa2x2a5x5
x=1,a0a1a2a3a4a5=2533
x=-1,a0a1a2a3a4a5=-1,
两式相减得2(a1a3a5)=60, 故展开式中x的奇次幂项的系数之和为30.

查看答案和解析>>


同步练习册答案