题目列表(包括答案和解析)
已知函数
的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数
的值;
(Ⅱ)求
在区间
上的最大值;
(Ⅲ)对任意给定的正实数
,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当
时,
,则
。
依题意得:
,即
解得
第二问当
时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当
时,
,则
。
依题意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①当
时,
,令
得![]()
当
变化时,
的变化情况如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
极小值 |
单调递增 |
极大值 |
|
又
,
,
。∴
在
上的最大值为2.
②当
时,
.当
时,
,
最大值为0;
当
时,
在
上单调递增。∴
在
最大值为
。
综上,当
时,即
时,
在区间
上的最大值为2;
当
时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若
,则
代入(*)式得:![]()
即
,而此方程无解,因此
。此时
,
代入(*)式得:
即
(**)
令
,则![]()
∴
在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于
,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数
,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
长沙市某民营化工企业经过近十年打拼,目前净资产已达3千万元. 由于种种原因,影响了企业的进一步发展,企业领导班子决定对企业内部所有环节进行改革. 据市场调查报告显示:在未来五年内,若引进新的技术及设备改造后,企业的生产总量为x千吨,最大限度不能超过4千吨,而每千吨销售可获纯利P(x)与生产总量x的函数关系为
由于该企业的产品市场占有量较大,产量的大小对每千吨产品的纯利润影响较大. 如果企业的生产总量为1千吨时,市场该产品每千吨销售可获纯利
万元,如果生产总量达到最大限度值4千吨,此时市场需求趋于饱和状态,每千吨销售只能获纯利
万元.企业在人员工资给、产品广告费用及环境污染治理等方面需投入每千吨1万元.
(1)求出常数a,b的值;
(2)求出该企业在未来五年内净资产的总额
(单位:千万元)关于生产总量x(单位:千吨)的函数表达式;
(3)当生产总量x(单位:千吨)取值为多少时,该企业在未来五年内净资产的总额(单位:千万元)
取最大值,并求出此最大值.
已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是
(A)(1-
,2) (B)(0,2)
(C)(
-1,2) (D)(0,1+
)
【解析】 做出三角形的区域如图
,由图象可知当直线
经过点B时,截距最大,此时
,当直线经过点C时,直线截距最小.因为
轴,所以
,三角形的边长为2,设
,则
,解得
,
,因为顶点C在第一象限,所以
,即
代入直线
得
,所以
的取值范围是
,选A.
已知函数
,其中
.
(1)若
在
处取得极值,求曲线
在点
处的切线方程;
(2)讨论函数
在
的单调性;
(3)若函数
在
上的最小值为2,求
的取值范围.
【解析】第一问,
因
在
处取得极值
所以,
,解得
,此时
,可得求曲线
在点
处的切线方程为:![]()
第二问中,易得
的分母大于零,
①当
时,
,函数
在
上单调递增;
②当
时,由
可得
,由
解得![]()
第三问,当
时由(2)可知,
在
上处取得最小值
,
当
时由(2)可知
在
处取得最小值
,不符合题意.
综上,函数
在
上的最小值为2时,求
的取值范围是![]()
| 3 |
| 3 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com