因此当时.的最大值为的最小值为 查看更多

 

题目列表(包括答案和解析)

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

长沙市某民营化工企业经过近十年打拼,目前净资产已达3千万元. 由于种种原因,影响了企业的进一步发展,企业领导班子决定对企业内部所有环节进行改革. 据市场调查报告显示:在未来五年内,若引进新的技术及设备改造后,企业的生产总量为x千吨,最大限度不能超过4千吨,而每千吨销售可获纯利P(x)与生产总量x的函数关系为 由于该企业的产品市场占有量较大,产量的大小对每千吨产品的纯利润影响较大. 如果企业的生产总量为1千吨时,市场该产品每千吨销售可获纯利万元,如果生产总量达到最大限度值4千吨,此时市场需求趋于饱和状态,每千吨销售只能获纯利万元.企业在人员工资给、产品广告费用及环境污染治理等方面需投入每千吨1万元.

(1)求出常数a,b的值;

(2)求出该企业在未来五年内净资产的总额(单位:千万元)关于生产总量x(单位:千吨)的函数表达式;

(3)当生产总量x(单位:千吨)取值为多少时,该企业在未来五年内净资产的总额(单位:千万元)取最大值,并求出此最大值.

查看答案和解析>>

已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的区域如图,由图象可知当直线经过点B时,截距最大,此时,当直线经过点C时,直线截距最小.因为轴,所以,三角形的边长为2,设,则,解得,因为顶点C在第一象限,所以,即代入直线,所以的取值范围是,选A.

 

查看答案和解析>>

已知函数,其中.

  (1)若处取得极值,求曲线在点处的切线方程;

  (2)讨论函数的单调性;

  (3)若函数上的最小值为2,求的取值范围.

【解析】第一问,处取得极值

所以,,解得,此时,可得求曲线在点

处的切线方程为:

第二问中,易得的分母大于零,

①当时, ,函数上单调递增;

②当时,由可得,由解得

第三问,当时由(2)可知,上处取得最小值

时由(2)可知处取得最小值,不符合题意.

综上,函数上的最小值为2时,求的取值范围是

 

查看答案和解析>>

国家加大水利工程建设,某地区要修建一条灌溉水渠,其横断面为等腰梯形(如图),底角A为600,考虑到坚固性及用料原因,要求其横断面的面积为6
3
平方米,记水渠深为x米,用料部分的周长(即渠底BC及两腰长的和)为y米,
(1).求y关于x的函数关系式,并指出其定义域;
(2).当水渠的腰长x为多少米时,水泥用料最省(即断面的用料部分的周长最小)?求此时用料周长的值
(3).如果水渠的深限制在[3,
3
]
范围内时,横断面用料部分周长的最小值是多少米?

查看答案和解析>>


同步练习册答案