[-1.1]与(*)矛盾 查看更多

 

题目列表(包括答案和解析)

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

已知某地每单位面积的菜地年平均使用氮肥量与每单位面积蔬菜年平均产量之间有的关系如下数据:

年份

x(kg)

y(t)

1985

70

5.1

1986

74

6.0

1987

80

6.8

1988

78

7.8

1989

85

9.0

1990

92

10.2

1991

90

10.0

1992

95

12.0

1993

92

11.5

1994

108

11.0

1995

115

11.8

1996

123

12.2

1997

130

12.5

1998

138

12.8

1999

145

13.0

(1)求xy之间的相关系数,并检验是否线性相关;

(2)若线性相关,则求蔬菜产量y与使用氮肥x之间的回归直线方程,并估计每单位面积施150kg时,每单位面积蔬菜的平均产量.

查看答案和解析>>

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

在一次恶劣气候的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人。请你根据所给数据判定是否在恶劣气候飞行中男人比女人更容易晕机?

查看答案和解析>>

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
在一次恶劣气候的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人。请你根据所给数据判定是否在恶劣气候飞行中男人比女人更容易晕机?

查看答案和解析>>

17.证明:假设f(x)至少有两个零点。不妨设有两个零点,则f()=0,f()=0

所以f()=f()与已知f(x)是单调函数矛盾,所以假设错误,因此f(x)在其定义域上是单调函数证明f(x)至多有一个零点

一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数X的概率分布。

(1)每次取出的产品不再放回去;    

(2)每次取出的产品仍放回去;

(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.

查看答案和解析>>

“已知:△ABC中,AB=AC,求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤:
(1)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;
(2)所以∠B<90°;
(3)假设∠B≥90°;
(4)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°
这四个步骤正确的顺序应是


  1. A.
    (1)(2)(3)(4)
  2. B.
    (3)(4)(2)(1)
  3. C.
    (3)(4)(1)(2)
  4. D.
    (3)(4)(2)(1)

查看答案和解析>>


同步练习册答案