A.0 B. C.T D.- 查看更多

 

题目列表(包括答案和解析)

log()()的值为(    )?

A.1                B.0?      C.-1         D.随t的变化而变化

查看答案和解析>>

log()()的值为(    )?

A.1                B.0?      C.-1         D.随t的变化而变化

查看答案和解析>>

若f(x)=(a<0)对于任意的t∈R,总有f(3+t)=f(1-t),那么

[  ]

A.f(4)<f(1)<f(2)
B.f(4)<f(2)<f(1)
C.f(1)<f(2)<f(4)
D.f(2)<f(1)<f(4)

查看答案和解析>>

若A,B,C是上不共线的三点,动点P满足[(1-t)+(1-t)+(1+2t)](t∈R且t≠0),则点P的轨迹一定通过△ABC的

[  ]

A.内心

B.垂心

C.外心

D.AB边的中点

查看答案和解析>>

已知曲线C的方程是(t+1)+2at)x+3at+b=0,直线l

方程是y=t(x-1),若对任意实数t,曲线C恒过定点P(1,0).

(1)求定值a,b;

(2)直线l截曲线C所得弦长为d,记f(t)=,则当t为何值时,f(t)有最大值,最大值是多少?

(3)若点M()在曲线C上,又在直线l上,求的取值范围.

查看答案和解析>>

 

一、选择题:

(1)D     (2)B     (3)C     (4)B     (5)B     (6)A   

(7)C     (8)A     (9)D    (10)B     (11)C    (12)B

 

二、填空题:

(13)2               (14)  (15)200  (16)②③ 

 

三、解答题

17.   (1) 故函数的定义域是(-1,1). ………… 2分

(2)由,得(R),所以,      ……………  5分

所求反函数为( R).                …………………  7分

(3) ==-,所以是奇函数.………  12分

 

18. (1)设,则.        …………………  1分

由题设可得解得      ………………… 5分

所以.                                …………………  6分

(2) ,. ……  8分

列表:

 

 

 

                                                     …………………  11分

由表可得:函数的单调递增区间为,       ………………  12分

19.(1)证明:设,且

,且.                    …………………  2分

上是增函数,∴.        …………………  4分

为奇函数,∴,                      

, 即上也是增函数.         ………………  6分

(2)∵函数上是增函数,且在R上是奇函数,

上是增函数.                       ……………………  7分

于是

 

.        …………  10分

∵当时,的最大值为

∴当时,不等式恒成立.                         ………………  12分

 

20. ∵AB=x, ∴AD=12-x.                                   ………………1分

,于是.         ………………3分

由勾股定理得   整理得    …………5分

因此的面积 .  ……7分

  得                                ………………8分

.                         ………………10分

当且仅当时,即当时,S有最大值  ……11分

答:当时,的面积有最大值             ………………12分

 

21. (1) h (x)                            …………………5分

   (2) 当x≠1时, h(x)= =x-1++2,                       ………………6分

      若 x > 1时, 则 h (x)≥4,其中等号当 x = 2时成立               ………………8分

若x<1时, 则h (x) ≤ 0,其中等号当 x = 0时成立               ………………10分

∴函数 h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞)             ………………12分

 

22. (1)

切线PQ的方程             ………2分

   (2)令y=0得                           ………4分

 

解得 .                         ………6分

又0<t<6, ∴4<t<6,                                            ………7分

g (t)在(m, n)上单调递减,故(m, n)              ………8分

(3)当在(0,4)上单调递增,

 

∴P的横坐标的取值范围为.                               ………14分

 

 


同步练习册答案