(A) (B) (C) (D) 查看更多

 

题目列表(包括答案和解析)

 复数

(A)                              (B)

 (C)                                 (D)

 

查看答案和解析>>

(A)(不等式选做题)不等式|x+1|-|x-2|>2的解集为
(
3
2
,+∞)
(
3
2
,+∞)

(B)(几何证明选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为6cm,8cm,以AC为直径的圆与AB交于点D,则AD=
18
5
(或3.6)
18
5
(或3.6)
cm.
(C)(坐标系与参数方程选做题)圆C的参数方程
x=1+cosα
y=1-sinα
(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=1,则直线l与圆C的交点的直角坐标是
(0,1),或(2,1)
(0,1),或(2,1)

查看答案和解析>>

(A)(几何证明选讲选做题)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,则BD的长为=
16
5
16
5

(B)(不等式选讲选做题)关于x的不等式|x-1|+|x-2|≤a2+a+1的解集为空集,则实数a的取值范围是
(-1,0)
(-1,0)

(C)(坐标系与参数方程选做题)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为
x=3cosθ
y=sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
3
)=6
.点P在曲线C上,则点P到直线l的距离的最小值为
6-
3
6-
3

查看答案和解析>>

(A)选修4-1:几何证明选讲
如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C,D两点,若PA=2,AB=4,PO=5,则⊙O的半径长为
13
13


(B)选修4-4:坐标系与参数方程
参数方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中当t为参数时,化为普通方程为
x2-y2=1
x2-y2=1

(C)选修4-5:不等式选讲
不等式|x-2|-|x+1|≤a对于任意x∈R恒成立,则实数a的集合为
{a|a≥3}
{a|a≥3}

查看答案和解析>>

(A)(不等式选做题)
若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(几何证明选做题)
如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为
2
3
3
2
3
3

(C)(坐标系与参数方程选做题) 
在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
2或-8
2或-8

查看答案和解析>>

 一、选择题

 

 

 

二.填空题

(13)         (14)10;         (15)180;           (16)① ③④

 三.解答题

(17)(本小题满分10分)

解 :

(Ⅰ)

函数 的单调增区间为

(Ⅱ)

 

 

 

 

 (18)(本小题满分12分)

解:(I)当

 (II)由(I)得

  

     

(19)(本小题满分12分)

解:依题意,第四项指标抽检合格的概率为 其它三项指标抽检合格的概率均为

    

    (I)若食品监管部门对其四项质量指标依次进行严格的检测,恰好在第三项指标检测结束

时,  能确定该食品不能上市的概率等于第一、第二项指标中恰有一项不合格而且第三项指标不合格的概率.

 

 

  (II)该品牌的食品能上市的概率等于四项指标都含格或第一、第二、第三项指标中仅有

一项不合格且第四项指标合格的概率.

 

(20)(本小题满分12分)

解法1:(I)取A1C1中点D,连结B1D,CD.

C1C=AlA=AlC, CD⊥AlCl

底面 ABC是边长为2的正三角形,

AB=BC=2,A1B1=BlCl=2,

B1D⊥AlCl

BlDCD=D,A1C1平面B1CD, A1C1B1C

(II) 面A1ACCl⊥底面ABC,面AlACC1⊥A1BlC1

又B1D⊥AlC1 BID⊥面A1CCl  

过点D作DE⊥A1C,连BlE,则BlE⊥AlC

B1ED为所求二面角的平面角  

 又A1A⊥A1C, C1C⊥A1C,又D是A1C1的中点,

     

  故所求二面角B1一A1C―C1的大小为arctan

解法2:(I)取AC中点O,连结BO,   ABC是正三角形 BO⊥AC    

又面 A1ACC1⊥底面ABC,BO⊥面A1ACC1 , BO⊥OA1

又AlA=A1CA1O⊥AC,如图建立空间直角坐标系O一xyz

(Ⅱ)为平面A1B1C的一个法向量,

 

故二面角B1-A1C-C1的大小为arccos

(21)(本小题满分12分)  。

  解:(I)曲线 在点( 0,)处的切线与 轴平行  

 

     (II)由c=0,方程 可化为

假没存在实数b使得此方程恰有一个实数根,

  此方程恰有一个实根

②若b>o,则  的变化情况如下

 

 

③若b<o,则  的变化情况如下

 

综合①②③可得,实数b的取值范围是

 

(22)解:, (Ⅰ)由题意设双曲线的标准方程为

由已知得

 

 双曲线G的标准方程为

(Ⅱ)

 

 

化简整理得,

www.ks5u.com

 


同步练习册答案