因此.函数 ----------------10分 查看更多

 

题目列表(包括答案和解析)

解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。

某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,

(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;

(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?

查看答案和解析>>

17.证明:假设f(x)至少有两个零点。不妨设有两个零点,则f()=0,f()=0

所以f()=f()与已知f(x)是单调函数矛盾,所以假设错误,因此f(x)在其定义域上是单调函数证明f(x)至多有一个零点

一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数X的概率分布。

(1)每次取出的产品不再放回去;    

(2)每次取出的产品仍放回去;

(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.

查看答案和解析>>

某市电信宽带私人用户月收费标准如下表:
方案 类        别 基本费用 超时费用
包月制 70元
有限包月制(限60小时) 50元 0.05元/分钟(无上限)
有限包月制(限30小时) 30元 0.05元/分钟(无上限)
假定每月初可以和电信部门约定上网方案.
(Ⅰ)若某用户每月上网时间为66小时,应选择
方案最合算;
(Ⅱ)王先生因工作需要在家上网,所在公司预测其一年内每月的上网时间T(小时)与月份n的函数关系为T=f(n)=
3n+237
4
 (1≤n≤12, n∈N)
.若公司能报销王先生全年上网费用,问公司最少会为此花费多少元?
(Ⅲ)一年后,因公司业务变化,王先生每月的上网时间T(小时)与月份n的函数关系为T=g(n)=10(
3
5
)n+30,  n∈N*
.假设王先生退休前一直从事此项业务,公司在花费尽量少的前提下,除为其报销每月的基本费用外,对于所有的超时费用,公司考虑一次性给予补贴a元,试确定最合理的a的值,并说明理由.

查看答案和解析>>

已知幂函数满足

(1)求实数k的值,并写出相应的函数的解析式;

(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。

【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足,得到

因为,所以k=0,或k=1,故解析式为

(2)由(1)知,,因此抛物线开口向下,对称轴方程为:,结合二次函数的对称轴,和开口求解最大值为5.,得到

(1)对于幂函数满足

因此,解得,………………3分

因为,所以k=0,或k=1,当k=0时,

当k=1时,,综上所述,k的值为0或1,。………………6分

(2)函数,………………7分

由此要求,因此抛物线开口向下,对称轴方程为:

时,,因为在区间上的最大值为5,

所以,或…………………………………………10分

解得满足题意

 

查看答案和解析>>

某上市股票在30天内每股的交易价格(元)与时间(天)所组成的有序数对落在下图中的两条线段上,该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示.

 

第t天

4

10

16

22

Q(万股)

36

30

24

18

 

 

 

⑴根据提供的图象,写出该种股票每股交易价格(元)与时间(天)所满足的函数关系式;

⑵根据表中数据确定日交易量(万股)与时间(天)的一次函数关系式;

⑶在(2)的结论下,用(万元)表示该股票日交易额,写出关于的函数关系式,并求这30天中第几天日交易额最大,最大值为多少?

【解析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;

(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;

(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.

 

查看答案和解析>>


同步练习册答案