题目列表(包括答案和解析)
解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数
的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。
某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费
若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,
(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?
17.证明:假设f(x)至少有两个零点。不妨设有两个零点
与
,则f(
)=0,f(
)=0
所以f(
)=f(
)与已知f(x)是单调函数矛盾,所以假设错误,因此f(x)在其定义域上是单调函数证明f(x)至多有一个零点
一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数X的概率分布。
(1)每次取出的产品不再放回去;
(2)每次取出的产品仍放回去;
(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.
| 方案 | 类 别 | 基本费用 | 超时费用 |
| 甲 | 包月制 | 70元 | |
| 乙 | 有限包月制(限60小时) | 50元 | 0.05元/分钟(无上限) |
| 丙 | 有限包月制(限30小时) | 30元 | 0.05元/分钟(无上限) |
| 3n+237 |
| 4 |
| 3 |
| 5 |
已知幂函数
满足
。
(1)求实数k的值,并写出相应的函数
的解析式;
(2)对于(1)中的函数
,试判断是否存在正数m,使函数
,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数
满足
,得到![]()
因为
,所以k=0,或k=1,故解析式为![]()
(2)由(1)知,
,
,因此抛物线开口向下,对称轴方程为:
,结合二次函数的对称轴,和开口求解最大值为5.,得到![]()
(1)对于幂函数
满足
,
因此
,解得
,………………3分
因为
,所以k=0,或k=1,当k=0时,
,
当k=1时,
,综上所述,k的值为0或1,
。………………6分
(2)函数
,………………7分
由此要求
,因此抛物线开口向下,对称轴方程为:
,
当
时,
,因为在区间
上的最大值为5,
所以
,或
…………………………………………10分
解得
满足题意
某上市股票在30天内每股的交易价格
(元)与时间
(天)所组成的有序数对
落在下图中的两条线段上,该股票在30天内的日交易量
(万股)与时间
(天)的部分数据如下表所示.
![]()
|
第t天 |
4 |
10 |
16 |
22 |
|
Q(万股) |
36 |
30 |
24 |
18 |
⑴根据提供的图象,写出该种股票每股交易价格
(元)与时间
(天)所满足的函数关系式;
⑵根据表中数据确定日交易量
(万股)与时间
(天)的一次函数关系式;
⑶在(2)的结论下,用
(万元)表示该股票日交易额,写出
关于
的函数关系式,并求这30天中第几天日交易额最大,最大值为多少?
【解析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;
(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;
(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com