∴m>5,存在最小正整数m=6,使对任意n∈N*有bn<成立 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
4x2+1
x
(x>0).
(1)求数列{an}满足a1=1,
1
an+1
=f(an)
,求an
(2)若bn=an+12+an+22+…+a2n+12,是否存在最小正整数P,使对任意x∈N*,都有bn
P
25
成立.

查看答案和解析>>

已知an=n·0.9n(n∈N*),
(1)判断{an}的单调性;
(2)是否存在最小正整数k,使an<k对于n∈N* 恒成立?

查看答案和解析>>

已知函数f(x)=(x>0).
(1)求数列{an}满足a1=1,,求an
(2)若bn=an+12+an+22+…+a2n+12,是否存在最小正整数P,使对任意x∈N*,都有bn成立.

查看答案和解析>>

设各项为正数的等比数列{an}的前n项和为Sn,S4=1,S8=17.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在最小正整数m,使得当n>m时,an
201115
恒成立?若存在,求出m;若不存在,请说明理由.

查看答案和解析>>

(2012•成都一模)已知函数f(x)在[a,b]上连续,定义
f1(x)=f(t)min,x∈[a,b],a≤t≤x
f2(x)=f(t)max,x∈[a,b],a≤t≤x
;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整数k使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.有下列命题:
①若f(x)=cosx,x∈[0,π],则f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],则f2(x)=2x,x∈[-1,4]
③f(x)=x为[1,2]上的1阶收缩函数;
④f(x)=x2为[1,4]上的5阶收缩函数.
其中你认为正确的所有命题的序号为
②③④
②③④

查看答案和解析>>


同步练习册答案