9.命题“对任意的x∈R.x3-x2+1≤ 0 的否定是A.存在x∈R.x3-x2+1>0 B.存在x∈R.x3-x2+1≤ 0C.不存在x∈R.x3-x2+1≤ 0 D.对任意的x∈R.x3-x2+1>0 查看更多

 

题目列表(包括答案和解析)

4、命题“对任意的x∈R,x3-x2+1≤0”的否定是(  )

查看答案和解析>>

2、命题“对任意的X∈R,x3-x2+1≤0”的否定是:
存在x0∈R,x03-x02+1>0

查看答案和解析>>

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

命题“对任意的x∈R,x3+x2+1≤0”的否定是(  )

查看答案和解析>>

7.命题“对任意的x∈R,x3-x2+1≤0”的否定是

(A)不存在x∈R,x3-x2+1≤0                        (B)存在x∈R,x3-x2+1≤0

(C)存在x∈R,x3-x2+2>0                          (D)对任意的x∈R,x3-x2+1>0

查看答案和解析>>

一、选择题(每小题5分,共50分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

C

B

C

A

B

B

A

C

二、填空题(每小题4分,共24分)

11.6ec8aac122bd4f6e;     12.6ec8aac122bd4f6e;    13.6ec8aac122bd4f6e;    14.6ec8aac122bd4f6e;     15.6ec8aac122bd4f6e;     16.(4);

6ec8aac122bd4f6e

 

19.解:∵6ec8aac122bd4f6e6ec8aac122bd4f6e,∴6ec8aac122bd4f6e………………2分

6ec8aac122bd4f6e6ec8aac122bd4f6e,………………8分

∴sinb=sin[(a+b)-a]=sin(a+b)cosa-cos(a+b)sina=6ec8aac122bd4f6e………………12分

 

20.(1)f(x) 6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e…………4分

6ec8aac122bd4f6e

6ec8aac122bd4f6e得,对称轴方程为:6ec8aac122bd4f6e………………6分

(2)由6ec8aac122bd4f6e得,f(x)的单调递减区间为:6ec8aac122bd4f6e,k∈Z

    ………………9分

(3)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,则6ec8aac122bd4f6e

所以函数f(x)在区间6ec8aac122bd4f6e上的值域为6ec8aac122bd4f6e………………13分

 

21.解:(1)依题意,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,…………2分

∵最大值为2,最小值为-2,∴A=2∴6ec8aac122bd4f6e,………………4分

∵图象经过(0,1),∴2sinj=1,即6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,………………6分

6ec8aac122bd4f6e………………7分

(2)∵6ec8aac122bd4f6e,∴-2≤ f(x) ≤ 2

6ec8aac122bd4f6e6ec8aac122bd4f6e解得,6ec8aac122bd4f6e6ec8aac122bd4f6e………………12分

 

22.解:(1)6ec8aac122bd4f6e

6ec8aac122bd4f6e=2cos2x+cosx-1………………5分

(2)要使图象至少有一公共点,须使f(x)=g(x)在上至少有一解,

令t=cos x,∵x∈(0,p) ∴x与t一一对应,且t∈(-1,1),

即方程2t2+t-1 = t2+(a+1)t + (a-3)在(-1,1)上至少有一解,………………7分

整理得:t2-at+(2-a)=0

1°一解:f(1)?f(-1)=(3-2a)?3<0,解得:6ec8aac122bd4f6e………………9分

2°两解(含重根的情形):

6ec8aac122bd4f6e,解得:6ec8aac122bd4f6e,∴6ec8aac122bd4f6e……11分

综上所述:6ec8aac122bd4f6e………………12分

 

 

本资料由《七彩教育网》www.7caiedu.cn 提供!


同步练习册答案