题目列表(包括答案和解析)
(本小题满分14分)
在△OAB的边OA,OB上分别有一点P,Q,已知
:
=1:2,
:
=3:2,连结AQ,BP,设它们交于点R,若
=a,
=b.
(1)用a与 b表示
;
(2)过R作RH⊥AB,垂足为H,若| a|=1, | b|=2, a与 b的夹角
的取值范围.
(本小题满分14分)已知A(8,0),B、C两点分别在y轴和x轴上运动,并且满足
。
(1)求动点P的轨迹方程。
(2)若过点A的直线L与动点P的轨迹交于M、N两点,且![]()
其中Q(-1,0),求直线L的方程.
(本小题满分14分)
已知函数
,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)讨论
的单调性;
(Ⅱ)设a=3,求
在区间{1,
}上值域。期中e=2.71828…是自然对数的底数。
(本小题满分14分)
已知数列{an}和{bn}满足:a1=λ,an+1=
其中λ为实数,n为正整数。
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有
a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由。
(本小题满分14分)
如图(1),
是等腰直角三角形,
,
、
分别为
、
的中点,将
沿
折起, 使
在平面
上的射影
恰为
的中点,得到图(2).
(Ⅰ)求证:
;
(Ⅱ)求三棱锥
的体积.
![]()
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
C
C
A
C
D
D
C
B
A
B
二、填空题
11.
;
12.
(或
); 13. 15;
14. 6;
15.
16.
;
17. 
三、解答题

…………12′
故函数
的取值范围是
…………12′
19. 解:(1)设袋中原有n个白球,由题意知:
,所以
=12,
解得n=4(舍去
),即袋中原有4个白球;
…………4′
(2)由题意,
的可能取值为1,2,3,4

所以,取球次数
的分布列为:

1
2
3
4
P




…………9′
(Ⅲ)因为甲先取,所以甲只有可能在第1次和第3次取球,记“甲取到白球”的事件为A,
则
或 “
=
…………14′
20. 解:⑴由条件得:
∴
∵
∴
∴
为等比数列∴
…………4′
⑵由
得
又
∴
…………9′
⑶∵

(或由
即
),∴
为递增数列.
∴
从而
∴
…………14′
21.解:(1)依题意有
,由显然
,得
,化简得
;
…………5′
(2)证明:(?)



…………10′
(?)设点A、B的坐标分别为
,不妨设点A在点P与点B之间,点
,依(?)有
*,又可设过点P(2,4)的直线方程为
,得
,
,代入上*式得
,又
,得
,当直线AB的斜率不存在时,也满足上式.即点Q总过直线
,得证.
…………15′
22. 解:(Ⅰ)设
与
在公共点
处的切线相同.
,
,由题意
,
.即
由
得:
,或
(舍去).即有
.
…………4′
令
,则
.于是当
,即
时,
;
当
,即
时,
.故
在
为增函数,在
为减函数,于是
在
的最大值为
.
…………8′
(Ⅱ)设
则
.故
在
为减函数,在
为增函数,于是函数
在
上的最小值是
.故当
时,有
,即当
时,
.
…………15′
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com