题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一、选择题:每小题5分,共60分
BCCAB ACADB BB
二、填空题:每小题4分,共16分
13.
,甲,甲:
①
三、解答题:本题满分共74分,解答应有必要的文字说明,解答过程或演算步骤
17.解:(1)甲、乙二人抽到的牌的所有基本事件(放快4用
(2)甲抽到3,乙抽到的牌只能是2,4,
因此乙抽到的牌的数字大于3的概率是
;------------------------(6分)
(3)甲抽到牌比乙大有(3,2),(4,2),(4,3),(
,乙获胜的与甲获胜是对立事件,所以乙获胜的概率是
,
此游戏不公平------------------(12分)
18.解:(1)由题意知
.

(5分)
,
-----------------(7分)
(2)


-------------------------------------(9分)

---------------(12分)
19.解:(1)
低面ABCD是正方形,O为中心,
AC⊥BD
又SA=SC,
AC⊥SO,又SO
BD=0,
AC⊥平面SBD-----------------(6分)
(2)连接


又由(1)知,AC⊥BD
且AC⊥平面SBD,
所以,AC⊥SB---------------(8分)
⊥
⊥
,且EM
NE=E
⊥平面EMN-------------(10分)
因此,当P点在线段MN上移动时,总有AC⊥EP-----(12分)
20.解:
-------------------------------(2分)
(2)
则
令
--------------------------------(4分)
当x在区间[-1,2]上变化时,y’,y的变化情况如下表:
X
-1



1
(1,2)
2
Y’
+
0
-
0
+
Y
3/2
单增
极大值
单减
极小值
单增
3
又


-----------(6分)
(3)证明:
又


---------------------(12分)
21.解:(1)
当
当
,适合上式,
-------------------------------(4分)
(2)
,
①
, ②
两式相减,得

=
=
=
--------------------------------(8分)
(3)证明,由

又

=
成立---------------------------------------------------(12分)
22.解:(1)由题意可知直线l的方程为
,
因为直线与圆
相切,所以
=1,既
从而
----------------------------------------------------------------------------------------(6分)
(2)设
则

---------------------------------(8分)
j当

k当
故舍去。
综上所述,椭圆的方程为
------------------------------------(14分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com