(2).求Sn. 查看更多

 

题目列表(包括答案和解析)

已知f(x)=logmx(m为常数,m>0且m≠1),设f(a1),f(a2),…,f(an)(n∈N+)是首项为4,公差为2的等差数列.
(1)求证:数列{an}是等比数列;
(2)若bn=anf(an),记数列{bn}的前n项和为Sn,当m=
2
时,求Sn
(3)若cn=anlgan,问是否存在实数m,使得{cn}中每一项恒小于它后面的项?若存在,求出实数m的取值范围.

查看答案和解析>>

已知f(x)=logax(a>0,a≠1),设数列f(a1),f(a2),f(a3),…,f(an)…是首项为4,公差为2的等差数列.
(I)设a为常数,求证:{an}成等比数列;
(II)设bn=anf(an),数列{bn}前n项和是Sn,当a=
2
时,求Sn

查看答案和解析>>

已知f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),…,f(an),…(n∈N*)是首项为m2,公比为m的等比数列.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若bn=an•f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn

查看答案和解析>>

设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标与纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)(理)设Sn=
1
an+1
+
1
an+2
+…+
1
a2n
,求Sn的最小值(n>1,n∈N*);
(3)设Tk=
1
a1
+
1
a2
+…+
1
ak
求证:T2n
7n+11
36
(n>1,n∈N*)

(文)记数列{an}的前n项和为Sn,且Tn=
Sn
3•2n-1
.若对一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

已知f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),…f(an)…(n∈N*?)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an•f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn
(3)若cn=f(an)•lgf(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案