又 ----14分 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.

   (Ⅰ)求笼内恰好剩下1只果蝇的概率;

 (Ⅱ)求笼内至少剩下5只果蝇的概率.

 

查看答案和解析>>

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.

(I)判别MN与平面AEF的位置关系,并给出证明;

(II)求多面体E-AFMN的体积.

                 

【解析】第一问因翻折后B、C、D重合(如下图),所以MN应是的一条中位线,则利用线线平行得到线面平行。

第二问因为平面BEF,……………8分

,又 ∴

(1)因翻折后B、C、D重合(如图),

所以MN应是的一条中位线,………………3分

.………6分

(2)因为平面BEF,……………8分

,………………………………………10分

 ∴

 

查看答案和解析>>

解关于的不等式:  (12分)

 

查看答案和解析>>

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

解关于的不等式:  (12分)

查看答案和解析>>


同步练习册答案