题目列表(包括答案和解析)
已知数列
的前
项和
和通项
满足
(
是常数且
)。
(Ⅰ)求数列
的通项公式;
(Ⅱ) 当
时,试证明
;
(Ⅲ)设函数
,
,是否存在正整数
,使
对
都成立?若存在,求出
的值;若不存在,请说明理由.
(本小题满分14分)已知数列
的前
项和
和通项
满足
(
是常数且
)。(Ⅰ)求数列
的通项公式;(Ⅱ) 当
时,试证明
;
(Ⅲ)设函数
,
,是否存在正整数
,使
对
都成立?若存在,求出
的值;若不存在,请说明理由.
已知数列
的前
项和
和通项
满足
(
是常数且
)。
(Ⅰ)求数列
的通项公式;
(Ⅱ) 当
时,试证明
;
(Ⅲ)设函数
,
,是否存在正整数
,使
对
都成立?若存在,求出
的值;若不存在,请说明理由.
(本小题满分16分)
高 已知数列
的前
项和为
,且满足
,
,其中常数
.
(1)证明:数列
为等比数列;
(2)若
,求数列
的通项公式;
(3)对于(2)中数列
,若数列
满足
(
),在
与
之间插入
(
)个2,得到一个新的数列
,试问:是否存在正整数m,使得数列
的前m项的和
?如果存在,求出m的值;如果不存在,说明理由.
(本小题满分12分)(注意:在试题卷上作答无效)
已知数列
的前
项和为
,且满足![]()
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
求为数列
的前
项和
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com