解: 1)因为对任意正整数n, m.当n > m时.总成立. 查看更多

 

题目列表(包括答案和解析)

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通公式;
(Ⅱ)若bn=(n+1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(1)求数列{an}的通项公式;
(2)是否存在实数λ,使得数列{Sn+λn+
λ
2n
}
为等差数列?若存在,求出λ的值,若不存在,则说明理由;
(3)设{bn}满足:bn=
2-n
(an+1)(an+1+1)
Tn
为数列{bn}的前n项和,求证:Tn
1
6

查看答案和解析>>

以下命题中真命题的序号是
 

(1)?x∈R,x+
1x
≥2
恒成立;
(2)在△ABC中,若sin2A=sin2B,则△ABC是等腰三角形;
(3)对等差数列{an}的前n项和Sn,若对任意正整数n都有Sn+1>Sn,则an+1>an对任意正整数n恒成立;
(4)a=3是直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行且不重合的充要条件.

查看答案和解析>>

设等差数列{an}的前n项和为Sn,首项a1=1,且对任意正整数n都有
a2n
an
=
4n-1
2n-1
,则Sn=
n2
n2

查看答案和解析>>

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在实数λ,使得数列{Sn+λ•n+
λ
2n
}
为等差数列?若存在,求出λ的值;若不存在,则说明理由.
(Ⅲ)求证:
1
6
n
k=1
2-k
(ak+1)(ak+1+1)
1
2

查看答案和解析>>


同步练习册答案