设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通公式;
(Ⅱ)若bn=(n+1)an,求数列{bn}的前n项和Tn.
分析:(I)数列{a
n}中,前n项和为S
n,点(a
n+1,S
n)在直线上,则2a
n+1+S
n-2=0;由递推关系,得
,验证
=
满足关系即得数列{a
n}的通公式;
(II)由(I)知,
bn=(n+1)()n-1,数列{b
n}的前n项和T
n:T
n=2×
+3×
+4×
+…+
(n+1);则∴
T
n=2×
+3×
+4×
+…+
(n+1);作差,得
T
n,从而得 T
n.
解答:解:(I)在数列{a
n}中,前n项和为S
n,且点(a
n+1,S
n)在直线2x+y-2=0上;
所以,2a
n+1+S
n-2=0,则
| | | 2an+1+Sn-2=0 | | 2an+Sn-1-2=0(n≥2) |
| | ?2an+1=an(n≥2) |
| |
,
(*),又∵2a
2+s
1-2=0,∴a
2=
,∴
=
满足关系式(*),
∴数列{a
n}的通公式为:
an=()n-1;
(II)由(I)知,
bn=(n+1)()n-1,数列{b
n}的前n项和T
n有:
T
n=2×
+3×
+4×
+…+
(n+1)①;
∴
T
n=2×
+3×
+4×
+…+
(n+1)②;
①-②,得
T
n=2×
+
+
+
+…+
-
(n+1)=1+
-
=3-
;
∴T
n=6-
.
点评:本题(I)考查了由递推关系求数列的通项,需要验证n=1时成立;(II)考查了用错位相减法对数列求和,需要注意作差后的首、末项情况.