题目列表(包括答案和解析)
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
定义在
上的函数
,给出以下结论:①
是周期函数;②
的最小值为-1;③当且仅当
时,
取最小值;④当且仅当
时,
;⑤
的图象上相邻两个最低点的距离是
.其中正确命题的序号是 .
函数
在同一个周期内,当
时,
取最大值1,当
时,
取最小值
。
(1)求函数的解析式![]()
(2)函数
的图象经过怎样的变换可得到
的图象?
(3)若函数
满足方程
求在
内的所有实数根之和.
【解析】第一问中利用![]()
又因![]()
又
函数![]()
第二问中,利用
的图象向右平移
个单位得
的图象
再由
图象上所有点的横坐标变为原来的
.纵坐标不变,得到
的图象,
第三问中,利用三角函数的对称性,
的周期为![]()
在
内恰有3个周期,
并且方程
在
内有6个实根且![]()
同理,
可得结论。
解:(1)![]()
又因![]()
又
函数![]()
(2)
的图象向右平移
个单位得
的图象
再由
图象上所有点的横坐标变为原来的
.纵坐标不变,得到
的图象,
(3)
的周期为![]()
在
内恰有3个周期,
并且方程
在
内有6个实根且![]()
同理,![]()
故所有实数之和为![]()
| x2 |
| a2 |
| y2 |
| b2 |
| A1B1 |
| A1A2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com