题目列表(包括答案和解析)
已知
,设![]()
和
是方程
的两个根,不等式
对任意实数
恒成立;
函数
有两个不同的零点.求使“P且Q”为真命题的实数
的取值范围.
【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3. 当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”为真命题,只需P真Q真即可。
解:由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
综上,要使“P∧Q”为真命题,只需P真Q真,即![]()
解得实数m的取值范围是(4,8]
已知等比数列
中,
,且
,公比
,(1)求
;(2)设
,求数列
的前
项和![]()
【解析】第一问,因为由题设可知![]()
又
故![]()
或
,又由题设
从而![]()
第二问中,![]()
当
时,
,
时![]()
故
时,
时,![]()
分别讨论得到结论。
由题设可知![]()
又
故![]()
或
,又由题设
![]()
从而
……………………4分
(2)![]()
当
时,
,
时
……………………6分
故
时,
……8分
时,![]()
![]()
![]()
……………………10分
综上可得
![]()
| b2+c2-a2 |
| 2bc |
| a2+c2-b2 |
| 2ac |
| x |
| x+2 |
| x |
| x+2 |
| x |
| 3x+4 |
| x |
| 7x+8 |
| x |
| 15x+16 |
| x |
| (2n-1)x+2n |
| x |
| (2n-1)x+2n |
| 10-x |
| 10+x |
| 10-x |
| 10+x |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com