A.任意. B.任意. 查看更多

 

题目列表(包括答案和解析)

(不等式选讲选做题)对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-
1
2
|+|x-
3
2
|)
恒成立,试求实数x的取值范围是
 

查看答案和解析>>

命题“存在α,β∈R,使sin(α+β)sin(α-β)≥sin2α-sin2β的否定为(  )

查看答案和解析>>

已知等差数列{an}的首项为a,公差为b;等比数列{bn}的首项为b,公比为a,其中a,b∈N+
且a1<b1<a2<b2<a3
(1)求a的值;
(2)若对于任意n∈N+,总存在m∈N+,使am+3=bn,求b的值;
(3)在(2)中,记{cn}是所有{an}中满足am+3=bn,m∈N+的项从小到大依次组成的数列,又记Sn为{cn}的前n项和,tn和{an}的前n项和,求证:Sn≥Tn(n∈N).

查看答案和解析>>

已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
(1)证明函数y=f(x)是R上的单调性;
(2)讨论函数y=f(x)的奇偶性;
(3)若f(x2-2)+f(x)<0,求x的取值范围.

查看答案和解析>>

下列命题正确的个数有(  )
①若a>1,则
1
a
<1
②若a>b,则
1
a
1
b

③对任意实数a,都有a2≥a④若ac2>bc2,则a>b.
A、1个B、2个C、3个D、4个

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期为.                                 (8分)
(2)∵,∴
.                               (12分)

18、解:(1)表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率

②三取取球中有2次出现最大数字3的概率

③三次取球中仅有1次出现最大数字3的概率

.   ……………………………………………………6分

(2)在时, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布为:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足为,连结,由侧面底面,得底面

因为,所以

,故为等腰直角三角形,

由三垂线定理,得

(Ⅱ)由(Ⅰ)知,依题设

,由,得

的面积

连结,得的面积

到平面的距离为,由于,得

解得

与平面所成角为,则

所以,直线与平面所成的我为

20、解:(I)由题意知,因此,从而

又对求导得

由题意,因此,解得

(II)由(I)知),令,解得

时,,此时为减函数;

时,,此时为增函数.

因此的单调递减区间为,而的单调递增区间为

(III)由(II)知,处取得极小值,此极小值也是最小值,要使)恒成立,只需

,从而

解得

所以的取值范围为

21、解:(Ⅰ)解法一:易知

所以,设,则

因为,故当,即点为椭圆短轴端点时,有最小值

,即点为椭圆长轴端点时,有最大值

解法二:易知,所以,设,则

(以下同解法一)

(Ⅱ)显然直线不满足题设条件,可设直线

联立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的两个根为

时,

所以

时,

所以

时,

所以时;

时,

所以

(II)解:

(III)证明:

所以

时,

同时,

综上,当时,

 

 

 


同步练习册答案