⑵.求的概率分布列及数学期望, 查看更多

 

题目列表(包括答案和解析)

一袋中装有分别标记着数字1、2、3、4的4个球,若从这只袋中每次取出1个球,取出后放回,连续取三次,设取出的球中数字最大的数为ξ.(1)求ξ=3时的概率;(2)求ξ的概率分布列及数学期望.

查看答案和解析>>

甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.
(I)求再赛2局结束这次比赛的概率;
(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的概率分布列及数学期望.

查看答案和解析>>

甲乙两人各进行3次射击,甲每次击中目标的概率为
1
2
,乙每次击中目标的概率为
1
3

(1)记甲击中目标的次数为ξ,求ξ的概率分布列及数学期望.
(2)求乙至多击中目标2次的概率.
(3)求甲恰好比乙多击中目标2次的概率.

查看答案和解析>>

(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为
1
10
和p.
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为
49
50
,求p的值;
(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.

查看答案和解析>>

某校高三数学理科组有10名教师,其中4名女老师;文科组有5位老师,其中3位女老师.现在采取分层抽样的方法(层内采用不放回简单随机抽样)从文、理两科中抽取3名教师进行“标、纲、题”测试.
(1)求从文、理两科各抽取的人数.
(2)求从理科组抽取的教师中恰有1名女教师的概率.
(3)记ξ表示抽取的3名教师中男教师人数,求ξ的概率分布列及数学期望.

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期为.                                 (8分)
(2)∵,∴
.                               (12分)

18、解:(1)表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率

②三取取球中有2次出现最大数字3的概率

③三次取球中仅有1次出现最大数字3的概率

.   ……………………………………………………6分

(2)在时, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布为:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足为,连结,由侧面底面,得底面

因为,所以

,故为等腰直角三角形,

由三垂线定理,得

(Ⅱ)由(Ⅰ)知,依题设

,由,得

的面积

连结,得的面积

到平面的距离为,由于,得

解得

与平面所成角为,则

所以,直线与平面所成的我为

20、解:(I)由题意知,因此,从而

又对求导得

由题意,因此,解得

(II)由(I)知),令,解得

时,,此时为减函数;

时,,此时为增函数.

因此的单调递减区间为,而的单调递增区间为

(III)由(II)知,处取得极小值,此极小值也是最小值,要使)恒成立,只需

,从而

解得

所以的取值范围为

21、解:(Ⅰ)解法一:易知

所以,设,则

因为,故当,即点为椭圆短轴端点时,有最小值

,即点为椭圆长轴端点时,有最大值

解法二:易知,所以,设,则

(以下同解法一)

(Ⅱ)显然直线不满足题设条件,可设直线

联立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的两个根为

时,

所以

时,

所以

时,

所以时;

时,

所以

(II)解:

(III)证明:

所以

时,

同时,

综上,当时,

 

 

 


同步练习册答案