的条件下,求二面角的平面角的正切值. 查看更多

 

题目列表(包括答案和解析)

如图,四棱锥P-ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB.点E在棱PA上,.
(1)求异面直线PA与CD所成的角;
(2)点E在棱PA上,且
PE
EA
,当λ为何值时,有PC∥平面EBD;
(3)在(2)的条件下求二面角A-BE-D的平面角的余弦值.

查看答案和解析>>

设x1、x2∈R,常数a>0,定义运算“⊕”:x1⊕x2=(x1+x22,定义运算“?”:x1?x2=(x1-x22;对于两点A(x1,y1)、B(x2,y2),定义d(AB)=
y1?y2

(1)若x≥0,求动点P(x,
(x⊕a)-(x?a)
) 的轨迹C;
(2)已知直线l1 : y=
1
2
x+1
与(1)中轨迹C交于A(x1,y1)、B(x2,y2)两点,若
(x1?x2)+(y1?y2)
=8
15
,试求a的值;
(3)在(2)中条件下,若直线l2不过原点且与y轴交于点S,与x轴交于点T,并且与(1)中轨迹C交于不同的两点P、Q,试求
|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
的取值范围.

查看答案和解析>>

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=
2
,∠CDA=45°,求四棱锥P-ABCD的体积.
(Ⅲ)在满足(Ⅱ)的条件下求二面角B-PC-D的余弦值的绝对值.

查看答案和解析>>

如图,在直三棱柱ABC-A1B1C1中,E是BC的中点。

(1)求异面直线AE与A1C所成的角;

(2)若G为C1C上一点,且EG⊥A1C,试确定点G的位置;

(3)在(2)的条件下,求二面角A1-AG-E的大小(文科求其正切值)。

查看答案和解析>>


同步练习册答案