令∵当∴在内为单调递减函数. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=-
2xx+1

(1)用定义证明函数f(x)在(-1,+∞)上为单调递减函数;
(2)若g(x)=a-f(x),且当x∈[1,2]时g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

已知定义在R上的奇函数f(x),当x>0时,f(x)=
x2+1
-
1
2
ax

(Ⅰ)当a=
2
时,讨论f(x),在(-∞,0)上的单调性;
(Ⅱ)若f(x),在(-∞,0)上为单调递减函数,求a的取值范围.

查看答案和解析>>

探究函数f(x)=x+
4
x
,x∈(-∞,0)的最大值,并确定取得最大值时x的值.列表如下:
x -3 -2.3 -2.2 -2.1 -2 -1.9 -1.7 -1.5 -1 -0.5
y -4.3 -4.04 -4.02 -4.005 -4 -4.005 -4.05 -4.17 -5 -8.5
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
4
x
,x∈(-∞,0)在区间
 
上为单调递增函数.当x=
 
时,f(x)最大=
 

(2)证明:函数f(x)=x+
4
x
在区间[-2,0)为单调递减函数.

查看答案和解析>>

已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.
(1)当a=-2时,求函数f(x)的解析式;
(2)若函数f(x)为单调递减函数;
①直接写出a的范围(不必证明);
②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.

查看答案和解析>>

探究函数f(x)=x+
4
x
,x∈(-∞,0)的最大值,并确定取得最大值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
x -3 -2.3 -2.2 -2.1 -2 -1.9 -1.7 -1.5 -1 -0.5
y -4.3 -4.04 -4.02 -4.005 -4 -4.005 -4.05 -4.17 -5 -8.5
(1)函数f(x)=x+
4
x
,x∈(-∞,0)在区间
(-∞,-2)
(-∞,-2)
上为单调递增函数.当x=
-2
-2
时,f(x)最大=
-4
-4

(2)证明:函数f(x)=x+
4
x
在区间[-2,0)为单调递减函数.
(3)若函数h(x)=
x2-ax+4
x
在x∈[-2,-1]上,满足h(x)≥0恒成立,求a的范围.

查看答案和解析>>


同步练习册答案