故令.∴或. 查看更多

 

题目列表(包括答案和解析)

的导数为,若函数的图象关于直线对称,且.

(Ⅰ)求实数的值;

(Ⅱ)求函数的单调区间.

【解析】第一问中,由于函数的图象关于直线对称,所以.

  ∴

第二问中由(Ⅰ),

   令,或

∴函数上递增,在上递减.

 

查看答案和解析>>

中,已知 ,面积

(1)求的三边的长;

(2)设(含边界)内的一点,到三边的距离分别是

①写出所满足的等量关系;

②利用线性规划相关知识求出的取值范围.

【解析】第一问中利用设中角所对边分别为

    

又由 

又由 

       又

的三边长

第二问中,①

依题意有

作图,然后结合区域得到最值。

 

查看答案和解析>>

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

已知函数为实数).

(Ⅰ)当时,求的最小值;

(Ⅱ)若上是单调函数,求的取值范围.

【解析】第一问中由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

第二问.

时,,在上有递增,符合题意;  

,则,∴上恒成立.转化后解决最值即可。

解:(Ⅰ) 由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

(Ⅱ) .

时,,在上有递增,符合题意;  

,则,∴上恒成立.∵二次函数的对称轴为,且

  .   综上

 

查看答案和解析>>

某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为
1
2
,乌克兰队赢的概率为
1
3
,且每局比赛输赢互不影响.若中国队第n局的得分记为an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行.设随机变量ξ表示此次比赛共进行的局数,求ξ的分布列及数学期望.

查看答案和解析>>


同步练习册答案