其中真命题是 . www.xkb123.com 查看更多

 

题目列表(包括答案和解析)

现给出下列命题:
①若p,q是两个简单命题,则“p且q为真”是“p或q为真”的必要不充分条件;
②若椭圆
x2
16
+
y2
25
=1
的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为16;
③过点(0,2)与抛物线y2=-5x仅有一个公共点的直线有3条;
④导数为0的点一定是函数的极值点.
其中正确的结论的序号是
 
(要求写出所有正确结论的序号).

查看答案和解析>>

已知 l,m,n是互不相同的直线,α,β是不同的平面,则下列四个命题:
①m?α,l∩α=A,点A∉m,则 l与 m 是异面直线;
②若lα,mβ,αβ,则lm;
③l、m是异面直线,lα,mα,且n⊥l,n⊥m,则n⊥α;
④若l?α,m?α,l∩m=A,lβ,mβ,则αβ
其中是真命题的是 ______(请写出所有正确答案的序号)

查看答案和解析>>

已知 l,m,n是互不相同的直线,α,β是不同的平面,则下列四个命题:
①m?α,l∩α=A,点A∉m,则 l与 m 是异面直线;
②若l∥α,m∥β,α∥β,则l∥m;
③l、m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
④若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β
其中是真命题的是 ________(请写出所有正确答案的序号)

查看答案和解析>>

已知 是互不相同的直线,  是不同的平面,则下列四个命题:

  ①  与 m 是异面直线;

       ② 若

     ③ m是异面直线,

     ④ 若,则

其中是真命题的是          (请写出所有正确答案的序号)

查看答案和解析>>

下列说法正确的是
 
.(写出所有正确说法的序号)
①若p是q的充分不必要条件,则?p是?q的必要不充分条件;
②命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
③设x,y∈R.命题“若xy=0,则x2+y2=0”的否命题是真命题;
④若z=
4i
1+i
+(1+
3
i)2,则z=
.
z

查看答案和解析>>

 

一.选择

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

B

A

C

A

D

B

C

B

A

B

二.填空

13.      14. 0      15.100     16.  ②③④

三。解答题

17.(满分10分)

(1)    ,∴,∴

    (5分)

(2)

      ,∴f(x)的值域为           (10分)

18.解:(1)拿每个球的概率均为,两球标号的和是3的倍数有下列4种情况:

(1,2),(1,5),(2,4),(3,6)每种情况的概率为:

所以所求概率为:   (6分)

(2)设拿出球的号码是3的倍数的为事件A,则,拿4次至少得2分包括2分和4分两种情况。

      (12分)

 

19 (满分12分)

解法一:(Ⅰ)取BC中点O,连结AO.

为正三角形,.……3分

 连结,在正方形中,分别为的中点,

由正方形性质知.………5分

又在正方形中,

平面.……6分

(Ⅱ)设AB1与A1B交于点,在平面1BD中,

,连结,由(Ⅰ)得

为二面角的平面角.………9分

中,由等面积法可求得,………10分

所以二面角的大小为.……12分

解法二:(Ⅰ)取中点,连结.取中点,以为原点,如图建立空间直角坐标系,则

……3分

平面.………6分

(Ⅱ)设平面的法向量为

为平面的一个法向量.……9分

由(Ⅰ)为平面的法向量.……10分

所以二面角的大小为.……12分

20.(满分12分)解:(I)

      ①                   …2分

,      ②                                      …4分

            ③                                     … 6分

联立方程①②③,解得                         … 7分

   (II)

                             … 9分

x

(-∞,-3)

-3

(-3,1)

1

(1,+∞)

f′(x)

+

0

0

+

f(x)

极大

极小

                                             

    故h(x)的单调增区间为(-∞,-3),(1,+∞),单调减区间为(-3,1)

 

21.(满分12分)

解:(1)∵,∴.

).

).

).

).                    …3分

数列等比,公比,首项

,且,∴.

.  

.                                …6分

(2)

.

,        ①

∴2.       ②

①-②得 -

           

            ,                                   …9分

.                                               …12分

22.(满分12分)

解:⑴设Q(x0,0),由F(-c,0)                              

A(0,b)知

                                       …2分

,得                            …4分

因为点P在椭圆上,所以                             …6分

整理得2b2=3ac,即2(a2-c2)=3ac,故椭圆的离心率e=      …8分

⑵由⑴知

于是F(-a,0), Q

△AQF的外接圆圆心为(a,0),半径r=|FQ|=a                        …10分

所以,解得a=2,∴c=1,b=,所求椭圆方程为  …12分

 

 

 

 

 

 

 


同步练习册答案