17.解:设连结BD. 查看更多

 

题目列表(包括答案和解析)

如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且.

(Ⅰ)求证:CN∥平面AMB1

(Ⅱ)求证: B1M⊥平面AMG.

【解析】本试题主要是考查了立体几何汇总线面的位置关系的运用。第一问中,要证CN∥平面AMB1;,只需要确定一条直线CN∥MP,既可以得到证明

第二问中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到线线垂直,B1M⊥AG,结合线面垂直的判定定理和性质定理,可以得证。

解:(Ⅰ)设AB1 的中点为P,连结NP、MP ………………1分

∵CM   ,NP   ,∴CM       NP, …………2分

∴CNPM是平行四边形,∴CN∥MP  …………………………3分

∵CN  平面AMB1,MP奂  平面AMB1,∴CN∥平面AMB1…4分

(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

    ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

设:AC=2a,则

…………………………8分

同理,…………………………………9分

∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

………………………………10分

 

查看答案和解析>>

若有下列命题:①|x|2+|x|-2=0有四个实数解;②设a、b、c是实数,若二次方程ax2+bx+c=0无实根,则ac≥0;③若x2-3x+2≠0,则x≠2,④若x∈R,则函数y=
x2+4
+
1
x2+4
的最小值为2.上述命题中是假命题的有
 

(写出所有假命题的序号).

查看答案和解析>>

(2012•茂名二模)如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别在边CD,CB上,点E与点C,点D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED
(1)求证:BD⊥平面POA
(2)设AO∩BD=H,当O为CH中点时,若点Q满足
AQ
=
QP
,求直线OQ与平面PBD所成角的正弦值.

查看答案和解析>>

选修4-1几何证明
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC,AE,DE.
求证:∠E=∠C.

查看答案和解析>>

已知x1,x2是关于x的一元二次方程x2-(m-1)x-(m-1)=0的两个解,设y=f(m)=(x1+x22-x1x2,求函数y=f(m)的解析式及值域.

查看答案和解析>>


同步练习册答案