②若两圆内切: .则 查看更多

 

题目列表(包括答案和解析)

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是
①④⑤
①④⑤
(注:把你认为是正确的序号都填上).

查看答案和解析>>

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线AD=
7
2
;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则
b
c
+
c
b
的取值范围是[2,
5
]
.其中正确说法的序号是______(注:把你认为是正确的序号都填上).

查看答案和解析>>

已知△ABC的内角A,B,C的对边分别为a,b,c,下列说法中:①在△ABC中,a=x,b=2,B=45°,若该三角形有两解,则x取值范围是;②在△ABC中,若b=8,c=5,A=60°,则△ABC的外接圆半径等于;③在△ABC中,若c=5,,则△ABC的内切圆的半径为2;④在△ABC中,若AB=4,AC=7,BC=9,则BC边的中线;⑤设三角形ABC的BC边上的高AD=BC,a、b、c分别表示角A、B、C对应的三边,则的取值范围是.其中正确说法的序号是    (注:把你认为是正确的序号都填上).

查看答案和解析>>

(1)若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=
12
r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1,S2,S3,S4,则此四面体的体积V=
 

(2)在平面几何里有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积之间的关系,可以得出的正确结论是:“设三棱锥A-BCD的三侧面ABC,ACD,ADB两两垂直,则
 
.”

查看答案和解析>>

(1)若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=数学公式r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1,S2,S3,S4,则此四面体的体积V=________.
(2)在平面几何里有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积之间的关系,可以得出的正确结论是:“设三棱锥A-BCD的三侧面ABC,ACD,ADB两两垂直,则 ________.”

查看答案和解析>>


同步练习册答案