题目列表(包括答案和解析)
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,且经过点![]()
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存过点
(2,1)的直线
与椭圆
相交于不同的两点
,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆
的方程为
,由题意得![]()
解得![]()
第二问若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.解得。
解:⑴设椭圆
的方程为
,由题意得![]()
解得
,故椭圆
的方程为
.……………………4分
⑵若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.
又
,
因为
,即
,
所以![]()
.
即
.
所以
,解得
.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
| π | 3 |
在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系曲线C的极坐标方程为cos(
)=1,M,N分别为C与x轴,y轴的交点。
(I)写出C的直角坐标方程,并求M,N的极坐标;
(II)设MN的中点为P,求直线OP的极坐标方程。
(本小题满分10分)选修4-4 :坐标系与参数方程
在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为
cos(
)=1,M,N分别为C与x轴,y轴的交点。
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程。
(本题满分10分)
在直角坐标系xoy中,以o为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
,M,N分别为C与x轴,y轴的交点
(1)写出C的直角坐标方程,并求出M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com