2.正确地从函数的图象特征去讨论函数的主要性质, 查看更多

 

题目列表(包括答案和解析)

(2010•上海模拟)对于函数y=f(x)的图象上任意两点A(a,f(a)),B(b,f(b)),设点C分
AB
的比为λ(λ>0).若函数为f(x)=x2(x>0),则直线AB必在曲线AB的上方,且由图象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函数为f(x)=log2010x,请分析该函数的图象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

利用连续函数的图象特征,判定方程是否存在实数根.

查看答案和解析>>

根据图象特征分析以下函数:

              ②  

              ④   

其中在上是增函数的是________________;(只填序号即可)

 

查看答案和解析>>

对于函数y=f(x)的图象上任意两点A(a,f(a)),B(b,f(b)),设点C分
AB
的比为λ(λ>0).若函数为f(x)=x2(x>0),则直线AB必在曲线AB的上方,且由图象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函数为f(x)=log2010x,请分析该函数的图象特征,上述不等式可以得到不等式______.

查看答案和解析>>


同步练习册答案