题目列表(包括答案和解析)
(本小题满分14分)
在△OAB的边OA,OB上分别有一点P,Q,已知
:
=1:2,
:
=3:2,连结AQ,BP,设它们交于点R,若
=a,
=b.
(1)用a与 b表示
;
(2)过R作RH⊥AB,垂足为H,若| a|=1, | b|=2, a与 b的夹角
的取值范围.
(本小题满分14分)已知A(8,0),B、C两点分别在y轴和x轴上运动,并且满足
。
(1)求动点P的轨迹方程。
(2)若过点A的直线L与动点P的轨迹交于M、N两点,且![]()
其中Q(-1,0),求直线L的方程.
(本小题满分14分)
已知函数
,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)讨论
的单调性;
(Ⅱ)设a=3,求
在区间{1,
}上值域。期中e=2.71828…是自然对数的底数。
(本小题满分14分)
已知数列{an}和{bn}满足:a1=λ,an+1=
其中λ为实数,n为正整数。
(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和。是否存在实数λ,使得对任意正整数n,都有
a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由。
(本小题满分14分)
如图(1),
是等腰直角三角形,
,
、
分别为
、
的中点,将
沿
折起, 使
在平面
上的射影
恰为
的中点,得到图(2).
(Ⅰ)求证:
;
(Ⅱ)求三棱锥
的体积.
![]()
一.选择题
序号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
A
B
D
D
C
A
A
C
B
D
A
二填空题
13. 2或8; 14.
;
15.
; 16.
.
三.解答题
17.解:(Ⅰ)
………………………………………………………………4分
…………………………6分
(Ⅱ)
…………………………………………………8分

∴
…………………………………………………………………………10分
………………………………………………………………………………12分
18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=
,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2
,AD=4.
……………………………2分
∴
=
.………………………………………………………………4分
则V=
. ……………………………………………………………… 6分
(Ⅱ)∵PA=CA,F为PC的中点,∴AF⊥PC. ……………………………………8分
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.
∵E为PD中点,F为PC中点,∴EF∥CD.则EF⊥PC. ………………………………10分
∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分
19.设第一个匣子里的三把钥匙为A,B,C,第二个匣子里的三把钥匙为a,b,c(设A,a能打开所有门,B只能打开第一道门,b只能打开第二道门,C,c不能打开任何一道门)
(Ⅰ)第一道门打不开的概率为
;……………………………………………………………5分
(Ⅱ)能进入第二道门的情况有Aa,Ab,Ac,Ba,Bb,而二把钥匙的不同情况有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9种,故能进入第二道门的概率为
……………………………………………………………12分
20.(Ⅰ)依题


即
(
…………………………………………………3分
故
为等差数列,a1=1,d=2
………………………………………………………………………………………………5分
(Ⅱ)设公比为q,则由b1b2b3=8,bn>0
…………………………………………………6分
又
成等差数列
………………………………………………………………………………………8分
或
…………………………………………………………………………………10分
或
……………………………………………………………………12分
21解:(Ⅰ)依题PN为AM的中垂线

…………………………………………………2分
又C(-1,0),A(1,0)
所以N的轨迹E为椭圆,C、A为其焦点…………………………………………………………4分
a=
,c=1,所以
为所求………………………………………………………5分
(Ⅱ)设直线
的方程为:y=k(x-1),代入椭圆E的方程:x2+2y2=2得:
(1+2k2)x2-4k2x+2k2-2=0………………(1)
设G(x1,y1)、H(x2,y2),则x1,x2是(1)的两个根.
…………………………………………………………7分
依题


………………………………………………………9分
解得:
………………………………………………………………………12分
22.解法(一):
时,
即
……①
⑴
时,
恒成立,
⑵
时,①式化为
……②
⑶
时,①式化为
……③…………………………………………………5分
记
,则
…………………………7分



所以

故由②
,由③
………………………………………………………………………13分
综上
时,
在
恒成立.………………………………………………14分
解法(二):
时,
即
……①
⑴
时,
,
,不合题意…………………………………………………2分
⑵
恒成立
∴
在
上为减函数,
得
,矛盾,…………………………………………………………………………………5分
⑶
,
=

若
则
,
,故在[-1,1]内,
,得
,矛盾.
若

依题意,
解得
即
综上
为所求.……………………………………………………………………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com