(Ⅱ)是否存在最小的正整数k.使得不等式≤k-1994对于 恒成立?如果存在.请求出最小的正整数k,如果不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

已知函数为切点的切线倾斜角为.

(1)求m,n的值;

(2)是否存在最小的正整数k,使得不等式恒成立?若存在,求出最小的正整数k,否则请说明理由。

查看答案和解析>>

给定项数为的数列,其中.

若存在一个正整数,若数列中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列是“k阶可重复数列”,

例如数列

因为按次序对应相等,所以数列是“4阶可重复数列”.

(Ⅰ)分别判断下列数列

      ②

是否是“5阶可重复数列”?如果是,请写出重复的这5项;

(Ⅱ)若数为的数列一定是 “3阶可重复数列”,则的最小值是多少?说明理由;

(III)假设数列不是“5阶可重复数列”,若在其最后一项后再添加一项0或1,均可使新数列是“5阶可重复数列”,且,求数列的最后一项的值.

查看答案和解析>>

给定项数为的数列,其中.

若存在一个正整数,若数列中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列是“k阶可重复数列”,

例如数列

因为按次序对应相等,所以数列是“4阶可重复数列”.

(Ⅰ)分别判断下列数列

      ②

是否是“5阶可重复数列”?如果是,请写出重复的这5项;

(Ⅱ)若数为的数列一定是 “3阶可重复数列”,则的最小值是多少?说明理由;

(III)假设数列不是“5阶可重复数列”,若在其最后一项后再添加一项0或1,均可使新数列是“5阶可重复数列”,且,求数列的最后一项的值.

查看答案和解析>>

已知an=n·0.9n(n∈N*),
(1)判断{an}的单调性;
(2)是否存在最小正整数k,使an<k对于n∈N* 恒成立?

查看答案和解析>>

已知数列是其前n项的和,且

(I)求数列的通项公式;

(II)设,是否存在最小的正整数k,使得对于任意的正整数n,有恒成立?若存在,求出k的值;若不存在,说明理由

查看答案和解析>>

.选择题:

1

2

3

4

5

6

7

8

9

10

11

12

B

B

A

D

C

D

C

C

D

C

C

B

.填空题:

13. 1600 ;14.7;15. 14;16①②③④

 

三.解答题:

17.(本题满分10分)(Ⅰ)

(Ⅱ)

所以的最大值为

18.记小张能过第一关的事件为A,直接去闯第二关能通过的事件为B,直接去闯第三关能通过的事件为C.      2分

 则P(A)=0.8,P(B)=0.75,P(C)=0.5

(Ⅰ)小张在第二关被淘汰的概率为P(A?)=P(A)?(1-P(B))

 =0.8×0.25=0.2. 

 答:小张在第二关被淘汰的概率为0.2      7分

(Ⅱ)小张不能参加决赛的概率为P=1-P(A?B?C)=1-0.8×0.75×0.5=0.7

答:小张不能参加决赛的概率为0.7.    12

19.(Ⅰ)设等差数列的公差为d(d0).

      成等比数列,

   即,化简得,注意到

  6分,

(Ⅱ)=9,

   12分。

 

20.(Ⅰ)证明:连结于点,连结.

在正三棱柱中,四边形是平行四边形,

.

.   ……………………………2分

      ∵平面平面

∥平面.       …………………………4分

 

(Ⅱ)过点,过点,连结.

∵平面平面平面,平面平面

      ∴平面.

在平面内的射影.

.

是二面角的平面角.  

       在直角三角形中,.

同理可求: .

.

.          ……………………12分

21.(Ⅰ),依题意得,即.        2分   ,, ,    5分

(Ⅱ)令.,

,.因此,当时,   8分

要使得不等式对于恒成立,只需.则.故存在最小的正整数,使得不等式

对于恒成立.

\

(Ⅱ)

 

 

 

 


同步练习册答案