从而得到.又由 查看更多

 

题目列表(包括答案和解析)

解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。

某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,

(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;

(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?

查看答案和解析>>

研究“刹车距离”对于安全行车及分析交通事故责任都有一定的作用,所谓“刹车距离”就是指行驶中的汽车,从刹车开始到停止,由于惯性的作用而又继续向前滑行的一段距离.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得的数据如表:
刹车时的车速(km/h)0102030405060
刹车距离(m)00.31.02.13.65.57.8
(1)以车速为x轴,以刹车距离为y轴,在给定坐标系中画出这些数据的散点图;
(2)观察散点图,估计函数的类型,并确定一个满足这些数据的函数表达式;
(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度为多少?请问在事故发生时,汽车是超速行驶还是正常行驶?

查看答案和解析>>

已知等比数列中,,且,公比,(1)求;(2)设,求数列的前项和

【解析】第一问,因为由题设可知

 故

,又由题设    从而

第二问中,

时,

时, 

时,

分别讨论得到结论。

由题设可知

 故

,又由题设   

从而……………………4分

(2)

时,……………………6分

时,……8分

时,

 ……………………10分

综上可得 

 

查看答案和解析>>

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>


同步练习册答案