题目列表(包括答案和解析)
(本题满分14分)
已知函数
,
,![]()
(Ⅰ)当
时,若
在
上单调递增,求
的取值范围;
(Ⅱ)求满足下列条件的所有实数对
:当
是整数时,存在
,使得
是
的最大值,
是
的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对
,试构造一个定义在
,且
上的函数
,使当
时,
,当
时,
取得最大值的自变量的值构成以
为首项的等差数列。
(本题满分14分)
已知函数
,
,![]()
(Ⅰ)当
时,若
在
上单调递增,求
的取值范围;
(Ⅱ)求满足下列条件的所有实数对
:当
是整数时,存在
,使得
是
的最大值,
是
的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对
,试构造一个定义在
,且
上的函数
,使当
时,
,当
时,
取得最大值的自变量的值构成以
为首项的等差数列。
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
| e1 |
| e2 |
| e1 |
| e2 |
| e1 |
| e2 |
| π |
| 3 |
| e1 |
| e2 |
| e1 |
| e2 |
| 1 |
| 2 |
| 1 |
| 4 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com