⊙C圆心坐标 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xoy中,以C(1,-2)为圆心的圆与直线x+y+3
2
+1=0
相切.   (I)求圆C的方程;
(II)是否存在斜率为1的直线l,使得以l被圆C截得的弦AB为直径的圆过原点,若存在,求出此直线方程,若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xoy中,设点F(
1
2
,0)
,直线l:x=-
1
2
,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
( I) 求动点Q的轨迹的方程C;
( II) 设圆M过A(1,0),且圆心M在曲线C上,设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时弦长|TS|是否为定值?请说明理由.

查看答案和解析>>

(2013•绵阳二模)动点M(x,y)与定点F(l,0)的距离和它到直线l:x=4的距离之比是常数
1
2
,O为坐标原点.
(I )求动点M的轨迹E的方程,并说明轨迹E是什么图形?
(II) 已知圆C的圆心在原点,半径长为
2
是否存在圆C的切线m,使得m与圆C相切于点P,与轨迹E交于A,B两点,且使等式
AP
PB
=
OP
2
成立?若存在,求 出m的方程;若不存在,请说明理由.

查看答案和解析>>

(2012•淄博一模)在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的
2
倍后得到点Q(x,
2
y)
,且满足
AQ
BQ
=1

(I)求动点P所在曲线C的方程;
(II)过点B作斜率为-
2
2
的直线l交曲线C于M、N两点,且
OM
+
ON
+
OH
=
0
,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

(2012•郑州二模)已知圆C的圆心为C(m,0),m<3,半径为
5
,圆C与离心率e>
1
2
的椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的其中一个公共点为A(3,l),F1,F2分别是椭圆的左、右焦点.
(I)求圆C的标准方程;
(II)若点P的坐标为(4,4),试探究直线PF1与圆C能否相切?若能,设直线PF1与椭圆E相交于A,B两点,求△ABF2的面积;若不能,请说明理由.

查看答案和解析>>


同步练习册答案