设矩阵对应的变换是把坐标平面上的点的横坐标伸长3倍.再将纵坐标伸长2倍的两个伸压变换的复合.求其逆矩阵以及圆在的作用下的新曲线的方程. 查看更多

 

题目列表(包括答案和解析)

设矩阵M对应的变换是把坐标平面上的点的横坐标伸长3倍,再将纵坐标伸长2倍的两个伸压变换的复合,求其逆矩阵M-1以及
圆x2+y2=1在M-1的作用下的新曲线的方程.

查看答案和解析>>

设矩阵M对应的变换是把坐标平面上的点的横坐标伸长3倍,再将纵坐标伸长2倍的两个伸压变换的复合,求其逆矩阵M-1以及
圆x2+y2=1在M-1的作用下的新曲线的方程.

查看答案和解析>>

设矩阵M对应的变换是把坐标平面上的点的横坐标伸长3倍,再将纵坐标伸长2倍的两个伸压变换的复合,求其逆矩阵M-1以及
圆x2+y2=1在M-1的作用下的新曲线的方程.

查看答案和解析>>

(本小题满分7分) 选修4一2:矩阵与变换

设矩阵所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.

(Ⅰ)求矩阵的特征值及相应的特征向量;

(Ⅱ)求逆矩阵以及椭圆的作用下的新曲线的方程.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

一、填空题:(每小题5分,共70分)

1.2       2. 1+2i       3.π        4. 9       5.充分不必要

6.(s,t)  7.   8.    9.     10.

11.    12.  4       13.    14①③④

二、解答题:(共90分)

15、(本小题满分14分)

解: (Ⅰ)因为各组的频率和等于1,故低于50分的频率为:

………………………………3分

所以低于50分的人数为(人)………………………………………….5分

(Ⅱ)依题意,成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),

频率和为

所以,抽样学生成绩的合格率是%……………………………………………………8分.

于是,可以估计这次考试物理学科及格率约为%……………………………………9分.

(Ⅲ)“成绩低于50分”及“[50,60)”的人数分别是6,9。所以从成绩不及格的学生中选两人,他们成绩至少有一个不低于50分的概率为:

              ……………………………………………………14分

 

16.(本小题满分14分)

解:

(Ⅰ)当时,    ………………………………3分

时,是增函数,

所以函数的单调递增区间为.   ……………7分

(Ⅱ)由

因为 ,所以当时,取最小值3,即
时,取最大值4,即
代入(1)式得.        ………………………………14分

 

17.(本小题满分14分)

(Ⅰ)证明:侧面

侧面

………3分

中,

则有, 

,           ………………………………………6分

平面.        ……………………………………7分

 

(Ⅱ)证明:连,连

四边形是平行四边形,……………10分

                                       ………………………11分

平面平面

平面.                               ………………………14分

 

18.(本小题满分16分)

解:(I)为圆周的点到直线的距离为

的方程为的方程为…5分

(II)设椭圆方程为,半焦距为c,则椭圆与圆O恰有两个不同的公共点,则                     ………………………………7分

时,所求椭圆方程为;当时,

所求椭圆方程为                      ………………………………11分

(III)设切点为N,则由题意得,在中,,则

N点的坐标为,……………………12分

若椭圆为其焦点F1,F2

分别为点A,B故

若椭圆为,其焦点为,

此时          ………………………………16分

19.(本小题满分16分)

解:(1)为等差数列,∵,又

是方程的两个根

又公差,∴,∴ ……………………………      2分

   ∴   ∴………………………………  4分

(2)由(1)知, …………………………………    5分

…………………………………………  7分

是等差数列,∴,∴ …………………………  8分

舍去) ……………………………………………………… 9分

(3)由(2)得 …………………………………………………… 11分

  时取等号 … 13分

时取等号15分

(1)、(2)式中等号不可能同时取到,所以 ………………… 16分

 

20. (本小题满分16分)

解(I)由题意:

∴a=2                ……………………………………………  2分

所以h(x)在上为增函数,h(x)在上为增函数。…………       4分

(II)

欲证:只需证:,即证:

∴当x>1时,为增函数……………………………….9分

∴结论成立          ………………………………………………………………10分

 

(III)由 (1)知:

对应表达式为

∴问题转化成求函数

即求方程:

即:

∴当时,为减函数.

时,为增函数.

的图象开口向下的抛物线

的大致图象如图:

的交点个数为2个.即的交点个数为2个. …………………………………16分

 

 

 

江苏省高邮中学2009届高三第一学期期末模拟考试

数学试卷

Ⅱ卷(加试题部分)参考答案

1.解: ,………………………………………………………  5分

的作用下的新曲线的方程为 ……10分

2.已知椭圆的长轴长为6,焦距,过椭圆左焦点F1作一直线,交椭圆于两点M、N,设,当α为何值时,MN与椭圆短轴长相等?

解:以椭圆的左焦点为极点长轴所在直线为

极轴建立极坐标系(如图)

这里:a=3,c=,

………………………2分

所以椭圆的极坐标方程为:

………………………4分

设M点的极坐标为,N点的极坐标为,………………5分

解法二:设椭圆的方程为,其左焦点为,直线MN的参数方程为:

,           ………………4分

将此参数方程代人椭圆方程并整理得:

,设M、N对应的参数分别为,则

2解:(1)以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系.

则有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0).

 ……………………2分

cos<>.            ………………………………4分

由于异面直线BE与AC所成的角是锐角,故其余弦值是.………………5分

(2),设平面ABE的法向量为

则由,得

取n=(1,2,2),

平面BEC的一个法向量为n2=(0,0,1),

 ………………………………7分

     …………………………………9分

由于二面角A-BE-C的平面角是n1与n2的夹角的补角,其余弦值是-.…… 10分

4.解:(1)记"一次取出的3张卡片上的数字互不相同的事件"为A,

       则  ………………………………………………2分

(2)由题意有可能的取值为:2,3,4,5

 

  ………5分

所以随机变量的概率分布为:

 所以的数学期望为E

同步练习册答案