6. 点P.B为顶点的△ABC的内部运动.则的取值范围是( ) 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=和图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5。

(1)求实数b,c的值;

(2)求函数f(x)在区间[-1,1]上的最小值;

(3)若函数y=f(x)图象上存在两点P,Q,使得对任意给定的正实数a都满足△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上,求点P的横坐标的取值范围。

 

查看答案和解析>>

(08年重点中学联考一理) 以下四个关于圆锥曲线的命题中:

①平面内到定点A(1,0)和定直线l:x=2的距离之比为的点的轨迹方程是:

②点P是抛物线y2=2x上的动点,点Py轴上的射影是M,点A的坐标是A(3,6),则

  |PA|+|PM|的最小值是6;

③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;

④若过点C(1,1)的直线l交椭圆于不同的两点AB,且CAB的中点,则直线l的方程是3x+4y-7=0:

  其中真命题的序号是           (写出所有真命题的序号)

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

如图,在平面直角坐标系xoy中,抛物线yx 2x-10与x轴的交点为A,与y轴的交点为点B,过点Bx轴的平行线BC,交抛物线于点C,连结AC.现有两动点PQ分别从OC两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OCPQ相交于点D,过点DDEOA,交CA于点E,射线QEx轴于点F.设动点PQ移动的时间为t(单位:秒)

(1)求ABC三点的坐标和抛物线的顶点坐标;

(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;

(3)当t∈(0)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

 


查看答案和解析>>

:如图,在平面直角坐标系xoy中,抛物线yx2x-10与x轴的交点为A,与y轴的交点为点B,过点Bx轴的平行线BC,交抛物线于点C,连结AC.现有两动点PQ分别从OC两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OCPQ相交于点D,过点DDEOA,交CA于点E,射线QEx轴于点F.设动点PQ移动的时间为t(单位:秒)
(1)求ABC三点的坐标和抛物线的顶点坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当t∈(0)时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

查看答案和解析>>


同步练习册答案