题目列表(包括答案和解析)
|
| 1 |
| x-1 |
| f(x1)-f(x2) |
| x1-x2 |
函数
的定义域为R,并满足以下条件:①对任意
,有
;
②对任意
、
,有
;③
则
(1)求
的值;
(2)求证:
在R上是单调增函数;
(3)若
,求证:![]()
设定义域为R的函数f(x)满足下列条件:①对任意x∈R,f(x)+f(-x)=0;②对任意x∈[-1,1],都有
>0,且f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是( )
A.-2≤t≤2
B.t≤-
或t=0或t≥![]()
C.-
≤t≤![]()
D.t≤-2或t=0或t≥2
函数
的定义域为
,若存在闭区间
,使得函数
满足以下两个条件:(1)
在[m,n]上是单调函数;(2)
在[m,n]上的值域为[2m,2n],则称区间[m,n]为
的“倍值区间”.下列函数中存在“倍值区间”的有 (填上所有正确的序号)
①
=x2(x≥0); ②
=ex(x∈R);
③
=
;④
=
.
一、填空题(本大题满分60分,共12小题,每小题满分5分)
10. 6 11.①⑤ 12. 2
二、选择题(本大题满分16分,共4小题,每小题满分4分)
三、解答题(本大题满分74,共5小题)
17.解:(1)取BC的中点F,连接EF、AF,则EF//PB,
所以∠AEF就是异面直线AE和PB所成角或其补角;
……………3分
∵∠BAC=60°,PA=AB=AC=2,PA⊥平面ABC,
(2)因为E是PC中点,所以E到平面ABC的距离为
…………10分
18.(本题满分14分)
19.(本题满分14分)
20.(本题满分16分,第1小题满分6分,第2小题满分10分)
雪花曲线的特性是周长无限增大而面积有限的图形。 ………………16分
(第3小题酌情给分)
21.(本题20分,第1小题满分4分,第2小题满分6分,第3小题6分,第4小题4分)
消去
的距离分别为d1、d2,且F1、F2在直线L的同侧。那么直线L与椭圆相交的充要条件为:
;直线L与椭圆M相切的充要条件为:
;直线L与椭圆M相离的充要条件为:
……14分
命题得证。
(写出其他的充要条件仅得2分,未指出“F1、F2在直线L的同侧”得3分)
(4)可以类比到双曲线:设F1、F2是双曲线
的两个焦点,点F1、F2到直线
距离分别为d1、d2,且F1、F2在直线L的同侧。那么直线L与双曲线相交的充要条件为:
;直线L与双曲线M相切的充要条件为:
;直线L与双曲线M相离的充要条件为:
………………20分
(写出其他的充要条件仅得2分,未指出“F1、F2在直线L的同侧”得3分)
本资料由《七彩教育网》www.7caiedu.cn 提供!
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com