解法二: ∵四边形是正方形 . 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥中,⊥底面,底面为正方形,分别是的中点.

(I)求证:平面

(II)求证:

(III)设PD=AD=a, 求三棱锥B-EFC的体积.

【解析】第一问利用线面平行的判定定理,,得到

第二问中,利用,所以

又因为,从而得

第三问中,借助于等体积法来求解三棱锥B-EFC的体积.

(Ⅰ)证明: 分别是的中点,    

.       …4分

(Ⅱ)证明:四边形为正方形,

.    ………8分

(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,

 

查看答案和解析>>

已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点.

(1)求证:DE∥平面PFB;

(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.

【解析】(1)证:DE//BF即可;

(2)可以利用向量法根据二面角P-BF-C的余弦值为,确定高PD的值,即可求出四棱锥的体积.也可利用传统方法直接作出二面角的平面角,求高PD的值也可.在找平面角时,要考虑运用三垂线或逆定理.

 

查看答案和解析>>

如图,四棱柱中,平面,底面是边长为的正方形,侧棱

 (1)求三棱锥的体积;

 (2)求直线与平面所成角的正弦值;

 (3)若棱上存在一点,使得,当二面角的大小为时,求实数的值.

【解析】(1)在中,

.                 (3’)

(2)以点D为坐标原点,建立如图所示的空间直角坐标系,则

       (4’)

,设平面的法向量为

,                                             (5’)

.  (7’)

(3)

设平面的法向量为,由,      (10’)

 

查看答案和解析>>

(理) 如图,四棱锥S-ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=
6
.试用向量的方法求解下列问题:
(1)棱SA的中点为M,求异面直线DM与SC所成角的大小;
(2)求侧面ASD与侧面BSC所成二面角的大小.

查看答案和解析>>

对于变量x与y,现在随机得到4个样本点A1(2,1),A2(3,2),A3(5,6),A4(4,5).小马同学通过研究后,得到如下结论:
(1)四个样本点的散点图是一个平行四边形的四个顶点;
(2)平行四边形A1A2A3A4的两条对角线A1A3、A2A4所在的直线均可以作为这组样本点的以变量x为解释变量的用最小二乘法求出的回归直线,所不同的是这两条回归直线所对应的回归方程的预报精度不同.你认为上述结论正确吗?试说明理由.(参考数据:
4
k=1
xk=14
4
k=1
xk2=54,
4
k=1
yk=14,
4
k=1
xkyk=58

查看答案和解析>>


同步练习册答案