题目列表(包括答案和解析)
已知椭圆
的中心为原点,点![]()
是它的一个焦点,直线
过点
与椭圆
交于
两点,且当直线
垂直于
轴时,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在直线
,使得在直线
上可以找到一点
,满足
为正三角形.如果存在,求出直线
的方程;如果不存在,请说明理由.
| 1 |
| 4 |
| ||
| 2 |
已知椭圆的中心在原点,焦点在x轴上,离心率
。它有一个顶点恰好是抛物线
=4y的焦点。过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
。
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线
交于点R,D为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。
已知椭圆
的中心在原点,焦点在
轴上,离心率
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
与曲线
的交点为
、
,求
面积的最大值.
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
与椭圆
相切
,直线
与
轴交于点
,当
为何值时
的面积有最小值?并求出最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com